763 research outputs found

    Telehealth Sensor Authentication Through Memory Chip Variability

    Get PDF
    In light of the COVID-19 world-wide pandemic, the need for secure and readily available remote patient monitoring has never been more important. Rural and low income communities in particular have been severely impacted by the lack of accessibility to in-person healthcare. This has created the need for access to remote patient monitoring and virtual health visits in order for greater accessibility to premier care. In this paper, we propose hardware security primitives as a viable solution to meet the security challenges of the telehealth market. We have created a novel solution, called the High-Low (HiLo) method, that generates physical unclonable function (PUF) signatures based on process variation within flash memory in order to uniquely identify and authenticate remote sensors. The HiLo method consumes 20x less power than conventional authentication schemes, has an average latency of only 39ms for signature generation, and can be readily implemented through firmware on ONFI 2.2 compliant off-the-shelf NAND flash memory chips. The HiLo method generates 512 bit signatures with an average error rate of 5.9 * 10-4, while also adapting for flash chip aging. Due to its low latency, low error rate, and high power efficiency, we believe that the HiLo method could help progress the field of remote patient monitoring by accurately and efficiently authenticating remote health sensors

    SDHome: Securing Fast Home Networks

    Get PDF
    Distributed denial of service (DDoS) is a highly discussed network attack in Software Defined Networks. Attacks such as the Mirai Botnet threaten to compromise portion of large networks, including home users. Today, corporations secure their network using enterprise level software to protest their network from DDoS attacks . But their solutions are meant for large networks and depend on expensive hardware. There are few security solutions for home users and most are expensive or require a subscription for full protection. In this paper, we propose a new solution in the form of a plug and play device that will allow home users to easily take control of their network. We will be using the SON controller Faucet and the protocol OpenFlow 1.3 to enable software defined functionalities. In addition to more basic network features such as blocking websites, the device will allow users to receive notifications about possible malicious activities on their network, generate device profiles for all devices on the network, and automatically detect and mitigate flooding attacks using a random forest classifier. We implement our network virtually using Graphic Network Simulator 3

    Evidence Report: Risk of Inadequate Human-Computer Interaction

    Get PDF
    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls

    Machine Learning-Driven Burrowing with a Snake-Like Robot

    Full text link
    Subterranean burrowing is inherently difficult for robots because of the high forces experienced as well as the high amount of uncertainty in this domain. Because of the difficulty in modeling forces in granular media, we propose the use of a novel machine-learning control strategy to obtain optimal techniques for vertical self-burrowing. In this paper, we realize a snake-like bio-inspired robot that is equipped with an IMU and two triple-axis magnetometers. Utilizing magnetic field strength as an analog for depth, a novel deep learning architecture was proposed based on sinusoidal and random data in order to obtain a more efficient strategy for vertical self-burrowing. This strategy was able to outperform many other standard burrowing techniques and was able to automatically reach targeted burrowing depths. We hope these results will serve as a proof of concept for how optimization can be used to unlock the secrets of navigating in the subterranean world more efficiently

    An X-ray Selected Galaxy Cluster at z=1.11 in the Rosat Deep Cluster Survey

    Get PDF
    We report the discovery of an X-ray luminous galaxy cluster at z =1.11. RDCS J0910+5422 was selected as an X-ray cluster candidate in the ROSAT Deep Cluster Survey on the basis of its spatial extent in a Rosat PSPC image. Deep optical and near-IR imaging reveal a red galaxy overdensity around the peak of the X-ray emission, with a significant excess of objects with J-K and I-K colors typical of elliptical galaxies at z ~ 1.0. Spectroscopic observations at the Keck II telescope secured 9 galaxy redshifts in the range 1.095<z<1.120 yielding a mean cluster redshift of =1.106. Eight of these galaxies lie within a 30 arcsec radius around the peak X-ray emission. A deep Chandra ACIS exposure on this field shows extended X-ray morphology and allows the X-ray spectrum of the intracluster medium to be measured. The cluster has a bolometric luminosity L_x = 2.48^{+0.33}_{-0.26} x 10^44 ergs/s, a temperature of kT = 7.2^{+2.2}_{-1.4} keV, and a mass within r = 1 Mpc of 7.0 x 10^14 M_sun (H_0=65 km/s/Mpc, Omega_m = 0.3, and Lambda = 0.7). The spatial distribution of the cluster members is elongated, which is not due to an observational selection effect, and followed by the X-ray morphology. The X-ray surface brightness profile and the spectrophotometric properties of the cluster members suggest that this is an example of a massive cluster in an advanced stage of formation with a hot ICM and an old galaxy population already in place at z > 1.Comment: 19 pages, 7 figures: Figures 1,4,6 included as separate jpg files. Accepted for publication in The Astronomical Journa

    Flash-based security primitives: Evolution, challenges and future directions

    Get PDF
    Over the last two decades, hardware security has gained increasing attention in academia and industry. Flash memory has been given a spotlight in recent years, with the question of whether or not it can prove useful in a security role. Because of inherent process variation in the characteristics of flash memory modules, they can provide a unique fingerprint for a device and have thus been proposed as locations for hardware security primitives. These primitives include physical unclonable functions (PUFs), true random number generators (TRNGs), and integrated circuit (IC) counterfeit detection. In this paper, we evaluate the efficacy of flash memory-based security primitives and categorize them based on the process variations they exploit, as well as other features. We also compare and evaluate flash-based security primitives in order to identify drawbacks and essential design considerations. Finally, we describe new directions, challenges of research, and possible security vulnerabilities for flash-based security primitives that we believe would benefit from further exploration

    Augmentation and repair of tendons using demineralised cortical bone

    Get PDF
    BACKGROUND: In severe injuries with loss of tendon substance a tendon graft or a synthetic substitute is usually used to restore functional length. This is usually associated with donor site morbidity, host tissue reactions and lack of remodelling of the synthetic substitutes, which may result in suboptimal outcome. A biocompatible graft with mechanical and structural properties that replicate those of normal tendon and ligament has so far not been identified. The use of demineralised bone for tendon reattachment onto bone has been shown to be effective in promoting the regeneration of a normal enthesis. Because of its properties, we proposed that Demineralised Cortical Bone (DCB) could be used in repair of a large tendon defect. METHODS: Allogenic DCB grafts in strip form were prepared from sheep cortical bone by acid decalcification and used to replace the enthesis and distal 1 cm of the ovine patellar tendon adjacent to the tibial tuberosity. In 6 animals the DCB strip was used to bridge the gap between the resected end of the tendon and was attached with bone anchors. Force plate analysis was done for each animal preoperatively and at weeks 3, 9, and 12 post operatively. At week 12, after euthanasia x-rays were taken and range of movements were recorded for hind limbs of each animal. Patella, patellar tendon - DCB and proximal tibia were harvested as a block and pQCT scan was done prior to histological analysis. RESULTS: Over time functional weight bearing significantly increased from 44% at 3 weeks post surgery to 79% at week 12. On retrieval none of the specimens showed any evidence of ossification of the DCB. Histological analysis proved formation of neo-enthesis with presence of fibrocartilage and mineralised fibrocartilage in all the specimens. DCB grafts contained host cells and showed evidence of vascularisation. Remodelling of the collagen leading to ligamentisation of the DCB was proved by the presence of crimp in the DCB graft on polarized microscopy. CONCLUSION: Combined with the appropriate surgical techniques, DCB can be used to achieve early mobilization and regeneration of a tendon defect which may be applicable to the repair of chronic rotator cuff injury in humans

    On the growth of perturbations in interacting dark energy and dark matter fluids

    Full text link
    The covariant generalizations of the background dark sector coupling suggested in G. Mangano, G. Miele and V. Pettorino, Mod. Phys. Lett. A 18, 831 (2003) are considered. The evolution of perturbations is studied with detailed attention to interaction rate that is proportional to the product of dark matter and dark energy densities. It is shown that some classes of models with coupling of this type do not suffer from early time instabilities in strong coupling regime.Comment: 11 pages, 2 figures. v3: minor changes, typos fixe
    corecore