
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Research, Scholarly, and Creative Activity 

3-1-2021 

Flash-based security primitives: Evolution, challenges and future Flash-based security primitives: Evolution, challenges and future 

directions directions 

Holden Gordon 
Santa Clara University 

Jack Edmonds 
Santa Clara University 

Soroor Ghandali 
Santa Clara University 

Wei Yan 
Clarkson University 

Nima Karimian 
San Jose State University, nima.karimian@sjsu.edu 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca 

Recommended Citation Recommended Citation 
Holden Gordon, Jack Edmonds, Soroor Ghandali, Wei Yan, Nima Karimian, and Fatemeh Tehranipoor. 
"Flash-based security primitives: Evolution, challenges and future directions" Cryptography (2021): 1-29. 
https://doi.org/10.3390/cryptography5010007 

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in 
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more 
information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3390/cryptography5010007
mailto:scholarworks@sjsu.edu


Authors Authors 
Holden Gordon, Jack Edmonds, Soroor Ghandali, Wei Yan, Nima Karimian, and Fatemeh Tehranipoor 

This article is available at SJSU ScholarWorks: https://scholarworks.sjsu.edu/faculty_rsca/2471 

https://scholarworks.sjsu.edu/faculty_rsca/2471


cryptography

Review

Flash-Based Security Primitives: Evolution, Challenges and
Future Directions

Holden Gordon 1, Jack Edmonds 1, Soroor Ghandali 1, Wei Yan 2 , Nima Karimian 3 and Fatemeh Tehranipoor 1,*

����������
�������

Citation: Gordon, H.; Edmonds, J.;

Ghandali, S.; Yan, W.; Karimian, N.;

Tehranipoor, F. Flash-Based Security

Primitives: Evolution, Challenges and

Future Directions. Cryptography 2021,

5, 7. https://doi.org/10.3390/

cryptography5010007

Received: 7 December 2020

Accepted: 27 January 2021

Published: 4 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical and Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA;
hgordon@scu.edu (H.G.); jsedmonds@scu.edu (J.E.); sghandali@scu.edu (S.G.)

2 Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA; wyan@clarkson.edu
3 Computer Engineering, San Jose State University, San Jose, CA 95192, USA; nima.karimian@sjsu.edu
* Correspondence: ftehranipoor@scu.edu

Abstract: Over the last two decades, hardware security has gained increasing attention in academia
and industry. Flash memory has been given a spotlight in recent years, with the question of whether
or not it can prove useful in a security role. Because of inherent process variation in the character-
istics of flash memory modules, they can provide a unique fingerprint for a device and have thus
been proposed as locations for hardware security primitives. These primitives include physical
unclonable functions (PUFs), true random number generators (TRNGs), and integrated circuit (IC)
counterfeit detection. In this paper, we evaluate the efficacy of flash memory-based security prim-
itives and categorize them based on the process variations they exploit, as well as other features.
We also compare and evaluate flash-based security primitives in order to identify drawbacks and
essential design considerations. Finally, we describe new directions, challenges of research, and pos-
sible security vulnerabilities for flash-based security primitives that we believe would benefit from
further exploration.

Keywords: flash memory; flash-based physical unclonable function; physical unclonable function
(PUF); true random number generator (TRNG); integrated circuit counterfeit detection; hardware se-
curity primitives; survey

1. Introduction and Background

Attacks on cyberinfrastructure and electronic devices become more and more ad-
vanced each year, costing companies and countries around the globe millions of dollars
in time and resources. Consequently, enhanced methods of information protection are
all the more important. In a world that relies as heavily on technology to function as we
do on a daily basis, individuals must also trust that it is safe to use and that our infor-
mation will be protected. Whether it be our cars, laptops, phones, or smart thermostats,
we often use devices to assist us in our daily efforts, without giving much thought to
how the information collected could be used against us if it falls into the wrong hands.
Constituting anything from a computer virus to identity theft, attacks via weaknesses in
device security are more prevalent than ever today. This places considerable responsibility
on the designers of such devices to ensure that private information stays private, and this
is where the constantly evolving field of hardware security comes into play.

While technology continues to grow in its omnipotence, the hardware devices them-
selves continue to shrink in size. This has led to an increased interest in hardware-based
security primitives, such as PUFs and TRNGs, because hardware implementations are less
exposed to attackers than software ones. Intrinsic implementations, which do not require
extra hardware components, have been proposed as a lightweight and cost-efficient basis
for security solutions. Both PUFs and TRNGs offer a promising solution in this regard,
as they can provide authentication and validation that do not require heavy cryptographic
measures and implementations [1–4]. To the best of our knowledge, we perform the first

Cryptography 2021, 5, 7. https://doi.org/10.3390/cryptography5010007 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-8059-6398
https://orcid.org/0000-0002-4590-7170
https://orcid.org/0000-0001-8410-4306
https://doi.org/10.3390/cryptography5010007
https://doi.org/10.3390/cryptography5010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5010007
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5010007?type=check_update&version=2


Cryptography 2021, 5, 7 2 of 29

systematic classification, analysis, and assessment of works regarding flash-based security
primitives. We aim in this way to present a thorough and transparent overview of this
field, provide clear insights, and collectivize the current and future trends. In this regard,
we evaluate the efficacy of flash memory-based security primitives and categorize them
based on the inherent process variation they exploit. We display where flash memory-based
security primitives are advantageous, as well as what challenges and vulnerabilities they
are faced with. Furthermore, we offer a discussion on new directions of research in this
area that we hope will spark new ideas among readers and researchers that will expand
the boundaries of flash-based security.

The motivation of memory-based security primitives is that they have several ad-
vantages over time-delay or other security primitive architectures due to their ubiquity,
difficulty to model, simplicity, and reliability. Memory is an essential component in nearly
every computing system—this guarantees that memory on-board a device can be used for
security primitives rather than relying on periphery hardware. Furthermore, time-based
PUFs, such as arbiter PUFs, are significantly more vulnerable to modeling-based attacks
whereas memory-based PUFs are significantly more difficult to model. Next, memory prim-
itives are often lightweight and simple since they leverage the on-board memory that has
relatively simple architectures. Finally, research in this area has demonstrated the relia-
bility of memory-based primitives even for stringent applications such as cryptographic
key generation.

Flash memory has become a promising candidate as a memory-based primitive due
to its popularity, density and architecture, and unique features (e.g., programmability and
adaptability). Flash memory has arisen as an extremely common storage platform due to
its very low cost. This has resulted in the widespread adoption of flash memory in many
computing devices. Secondly, flash memory provides extremely high density and a variety
of architectures. Therefore, flash can be used in a variety of different applications due to
the different architectures and has an extremely high density of flash cells. Finally, flash
memory is also programmable, allowing for different programming techniques to obtain
the most efficient security primitive construction, and the programming commands can be
adapted over time to provide advanced features such as aging resilience.

1.1. Our Contributions

Specifically, we make the following five major contributions in this paper:

1. We provide an overview of flash memory architecture and detail the various forms,
including two dimensional (2D) NAND, three dimensional (3D) NAND, and NOR
flash. We also discuss the different storage configurations used in flash memories.

2. We provide a detailed overview of various process variations exhibited through
disturbs and other entropy sources.

3. We provide a comprehensive literature review relevant to flash-based security prim-
itives, in order to allow for a clear and thorough view into the current state-of-the-
art works.

4. We provide a thorough cost-benefit evaluation and comparison of flash-based security
primitives to bring to light the advantages and limitations of each.

5. We elaborate on some open challenges and new directions of research in flash memory-
based security primitives that can provide new opportunities for further research in
this field.

1.2. Physical Unclonable Functions

A PUF is ideally unreproducible by manufacturers and attackers alike. PUFs take
advantage of the unique physical characteristics of an integrated circuit (IC) that result
from manufacturing variation on the micro and nano scales, giving each its own finger-
print. Armed with a unique set of challenge (input) and response (output) pairs (CRPs),
a PUF relies on inherent entropy as well as stability/reliability to provide uniquely secure
yet consistent operation [5]. Evaluating a PUF’s effective uniqueness involves determining



Cryptography 2021, 5, 7 3 of 29

whether or not it provides a different enough signature for its given IC to clearly differenti-
ate it from other ICs of the same kind. Computing the Hamming distance (HD) between
a pair of PUF identifiers (or the number of bit positions that differ in value) is one way
this can be done. No IC should have the same signature as any other. Reliability refers
to how well a PUF is able to provide a consistent response to the same challenge. This is
important because a PUF is intended to be used again and again and should not be easily
worn out or affected by environmental factors. Another important characteristic of a PUF
is its generated ID’s randomness. The randomness is necessary in order to prevent an
attacker from reconstructing the ID bits because of a poor entropy rate within an ID.

There are many forms of existing PUFs that have been researched extensively, in-
cluding arbiter PUFs [6], ring-oscillator PUFs [7], DRAM PUFs [8], and SRAM PUFs [9].
Flash-based PUFs are a relatively lesser-known type of PUF and could benefit from addi-
tional investigation. Flash-based PUFs rely on the concept of process variations, which will
be discussed in detail in this paper. So-called “weak and strong PUFs” are the two sub-
types of PUFs. Weak PUFs are used for storing secret keys to non-volatile memories [10].
They show some internal, unclonable physical disorder, and they are involved in some
form of challenge-response mechanism which should be access-restricted. It is considered
that even by having the PUF-carrying hardware, the adversaries cannot access the weak
PUF’s responses. Formerly, weak PUFs were toward special purpose circuits; now, they are
based on intrinsic PUFs built from CMOS parts, which are more affordable. SRAM PUFs
are the most popular type of weak PUF and a variety of other weak PUFs have been
proposed, including Flash [11] and DRAM [2,12]. The most important advantage of weak
PUFs is that it is harder for adversaries to obtain CRPs. There are two basic cases to
derive secret key in Weak PUFs. The first one is “shared secret key” which is known to the
manufacturer of the hardware and sometimes to a limited number of parties. One of the
perfect uses of shared key is encryption of the design bitstream [10]. The second one is
“unshared key” in which the key is unknown to any party outside the hardware and must
be inside the system. Memory encryption is one simple application of such an internal,
unshared key [10]. Strong PUFs have numerous CRPs which each time provide a new
CRP for the procedure of authentication. They exhibit a more complex challenge-response.
They are unpredictable, which means even if an adversary knows a large subset of CRPs,
it is impossible for them to predict the other unknown CRPs. Strong PUFs have public
access for challenge response mechanisms that allow everyone with physical possession of
the PUF to apply challenges to the strong PUF which lead to some downsides, such as the
need for many CRPs to remain secure [10].

1.3. True Random Number Generators

A TRNG is a device that generates random numbers from a physical process by
utilizing random “noise” signals, such as random telegraph noise, a chip’s power supply
noise, etc. [13–16]. The aim of a TRNG is to generate random numbers that are utterly
unpredictable (and often with lightweight hardware). These randomly generated bit
streams can be used for cryptographic purposes, such as serving as a cryptographic key in
an encryption or authentication process. Hardware security primitives built into device
memories can provide cost-efficient and practical security solutions, especially for resource-
constrained devices (such as in IoT applications). This is because memories are an intrinsic
part of most contemporary computer systems, and using them as security hardware does
not require the inclusion of additional hardware dedicated purely to device security [1].

1.4. IC Counterfeit Detection

As the supply chain grows, more diverse manufacturers and components are used
throughout the various stages of the supply chain. However, there are few ways of
verifying the correct production of these components [17]. Consequently, many counterfeit
products were and continue to be injected in the supply chain, creating a huge threat [17].
These recycled, reused, or or cloned parts often have reduced life expectancies and can



Cryptography 2021, 5, 7 4 of 29

pose serious reliability concerns. Furthermore, these products reduce the profitability of
legitimately created Integrated Circuit (IC) products, resulting in an estimated 100 billion
dollars lost in global revenue every year [18]. Moreover, 1% of semiconductor sales are
estimated to be from counterfeit units [19]. Detecting counterfeit products in non-invasive
and efficient ways has become imperative in creating stronger trust between parties in
the supply chain and providing critical infrastructure assurances in the quality of sourced
components. Example techniques of counterfeit detection focus on exploiting the aging
biases in SoCs in order to detect counterfeit [20].

1.5. Memories

Computer memories come in both volatile and non-volatile forms. Upon losing power,
volatile memory loses all stored data over a short period of time, while data stored in
non-volatile memory remain. To date, many hardware security primitives have been im-
plemented in various types of volatile memory, including dynamic random access memory
(DRAM) [2,21] and static random access memory (SRAM), which are fast to program
and very dense [22,23]. These allow for authentication, key generation, tamper detection,
and other security schemes that rely purely on existing IC resources in devices instead of
additional external hardware modules but they lose the data contents when the power
supply is turned off. Flash memory is a rather ubiquitous form of non-volatile memory
that can be electrically programmed and erased. It is typically faster and consumes less
power than its primary competitor today, hard disc drives (HDDs), which also keep data
content after losing power. Unlike an HDD, flash memory has no moving parts and this
is termed a solid-state form of memory. Because of its high memory density and elec-
trically programmable features, it has become widely adopted in lightweight embedded
hardware, including IoT technologies, and due to the process variations that come about
in the flash manufacturing process being user-programmable, flash memory-based PUFs
and TRNGs are prime candidates for lightweight hardware/device security. The sources
of flash memory process variations are discussed in detail in Section 5. These stable yet
unpredictable characteristics allow for the implementation of reliable hardware security
primitives unique to a given flash module [3,24–26].

1.6. Paper Organization

The rest of the paper is organized as follows. In Section 2, we provide an overview
of flash memory architectures, their types, and flash memory storage configurations in
Sections 2 and 3. In Section 4, we discuss sources of process variation in flash memory
useful for security purposes, and detailed methods of how these variations can be induced.
In Section 5, we provide a comprehensive literature review and categorize them into
different groups. In Section 6, we elaborate on new avenues and challenges of research in
flash memory-based security, and we conclude the paper in Section 7.

2. Flash Memory Architecture

As illustrated in Figure 1, flash memory generally consists of four main components:
dies, planes, blocks, and pages. Each memory package contains at least one die, which is the
smallest component that can independently execute commands. Within a die lies planes,
where concurrent operations take place. Blocks are erasable units that are subdivided into
pages, in which the individual memory cells are located. Blocks can also be further divided
first into sectors, which will each contain a set of pages, as shown in Figure 1a. The flash I/O
bus can be used for carrying data, addresses, and commands (as in this example), and many
of the control signals allowing for basic operations are active-low. The chip enable signal
(CE) prepares a page for an operation, the read and write enable (RE and WE) allow for
reading and writing data from and to memory (latching commands, addresses, and data
when the signals are pulsed), and the write-protect (WP) must be high for write operations
to occur. The command latch enable (CLE) latches commands into a command register
from the I/O port, and the address latch enable (ALE) similarly latches addresses into the



Cryptography 2021, 5, 7 5 of 29

address register. The ready/busy output pin (R/B) indicates whether or not the device
is ready for operation. Flash memory can be either asynchronous, where operations are
driven purely by the control signals, or synchronous, where a free-running clock controls
when operations occur [27,28].

Figure 1b illustrates an expanded visual of flash architecture features. In the upper
half of the figure, the data buffer section holds data before they are either released to the
data bus or sent to a sector from the data bus to be stored in memory. Tri-state buffers
can be used to accomplish this task, which passes or hold data based on a signal sent to
them from a control logic unit. The control signals, previously mentioned in describing
Figure 1b, are fed into the logic unit, which asserts the corresponding signals needed to
carry-out operations. The requested read/write address is stored in an address register
until the logic unit enables the address decoder, which then points to a location in memory
to be read from or written to [27,28].

(a) (b) (c)

Figure 1. (a) 3D NAND stacked architecture [29], (b) 3D NAND vertical gate (3dVG) architecture [30], and (c) 3D NAND
BiCS architecture [29].

3. Types of Flash Memory

The two dominant forms of flash memory are NAND flash and NOR flash. Developed
initially by Intel in 1988, NOR flash is typically used for code execution and storage,
while NAND flash is often better suited for data storage and was first introduced by
Toshiba in 1989. Three-dimensional NAND is a relatively new variant of NAND flash,
which increases the traditional 2D NAND flash storage capacity by expanding its planar
memory structure into a three-dimensional space. In general, writing and erasing can be
accomplished more quickly with NAND flash, while reading is faster with NOR flash.

3.1. NAND Flash Memory

The NAND-type flash memory [31] was originally developed to target solid-state
mass storage applications. Toward this end, NAND offers a small cell size, low power
consumption, and fast page-based read/program operations. In addition, the small erase
block size and fast erase times of NAND make it a very manageable memory.

3.1.1. 2D NAND Flash

Figure 2 (left) illustrates the basic structure of planar (two-dimensional) NAND flash
memory, which gets its name from its visual appearance. It is organized in strings of
cells connected in series and these strings resemble the pull-down network of a NAND
gate. A combination of lines driven high or low allow for reading, writing, and erasing
operations. Each string has a bit line select transistor on one end that connects to a bit
line, and a source line select transistor on the other that connects to a source line. Cells
store data in floating gate transistors through electron tunneling, and all cells connected
to a given word line comprise a page within a block. All cells in a page are operated on
together and typically allow for 512 bytes + 16 spare bytes, 2048 bytes + 64 spare bytes,
or 4096 bytes + 128 spare bytes of storage in the page [32]. A memory block often contains
either 32 or 64 pages. The configuration results in slow reading times relative to NOR
flash (NOR flash will be described in Section 3.2), as entire pages must be read at once



Cryptography 2021, 5, 7 6 of 29

to access sequential data. On the other hand, it does allow for faster writing and erasing
cycles. The series configuration of cells in the NAND architecture also allows for higher
storage capacity than a NOR architecture of similar size, which is an attractive quality
for space-constrained electronics. The bulk read and write operations offered by NAND
flash make it useful in a wide range of storage applications that involve sequential data
archiving, such as audio and video storage. NAND flash is commonly used in storage
devices such as SSDs (solid-state drives) for secondary storage in computers, USB flash
drives, and SD (secure digital) cards for portable devices such as digital cameras. NAND
flash memory is generally cheaper than NOR flash.

Figure 2. Internal structure of 2D NAND flash (left) and NOR flash (right).

3.1.2. 3D NAND Flash

Although most of the 2D NAND flash memories are based on floating gate (FG)
technology, most of the three-dimensional (3D) NAND flash memories for the cell transis-
tors are based on charge trapping (CT) technology. Both floating gates and charge traps
accomplish the same goal of storing electrons and have similar structures, but charge traps
generally have a simpler fabrication process that tailors itself well to the 3D architecture.
The first 3D integration of a memory chip was presented in 2006 [33] and consisted of verti-
cally stacking two identical planar NAND arrays with horizontal strings and word lines
(WLs). The 3D architecture using etching processes has been known as a new advanced
technology for CT-based and FG-based NAND design to increase the die density and to
have better performances [34]. Figure 1a depicts a straight-on view of the basic structure of
one possible 3D architecture, which consists of vertical arrays of NAND strings similar to
what is shown in Figure 2 (left). With bit line above and source line below, the memory cells
are sandwiched in-between and connected by channels that extend from top to bottom.
Similar to planar NAND, bit and source line selects allow connection between a string’s
memory cells and the bit and source lines.

The technologies of 3D architectures can be divided into three main categories: (I)
horizontal channel and gate, (II) horizontal channel and vertical gate, (III) vertical channel
and horizontal gate. The first category is known as 3D stacked structure [35], which is the
preliminary attempt to achieve 3D integration starting from planar technology. Figure 1a
shows a view of a 3D stacked NAND flash integrating two separate planes. The second
architecture (3DVG) has been investigated and extensively studied in [36] and is shown
in Figure 1b. In this architecture, the NAND cell string runs horizontally and is made of
several wordlines plus the dummy wordlines and the select transistors. A silicide layer can
be easily deposited on the top of the polysilicon gate to achieve a lower wordline resistance
and a very fast access time despite the long wordlines.

The vertical channel solution has rapidly become the mainstream integration scheme
for 3-D NAND flash arrays. For this architecture, the Bit Cost Scalable (BiCS) was presented
for the first time by Toshiba [37,38]. The improved versions of BiCS are called Pipe-shaped
Bit Cost Scalable (P-BiCS) [39], and the pathway to the V-NAND architecture presented
by Samsung in [40,41]. The BiCS 3D NAND flash architecture is described in Figure 1c.



Cryptography 2021, 5, 7 7 of 29

The first element of the architecture is the control gate (CG) stack shown by the different
rectangle elements piled on top of each other, whereas the bottom rectangle plate is the
ensemble of source line selectors (SLS) terminating the flash string. Multiple holes are
drilled through the stacks and filled with polysilicon in order to form a series of vertically
arranged NAND flash memory cells. Bitline selectors (BLS) and bitline (BL) contacts
are on top of the structure [42]. Each cell in the BiCS architecture works in depletion
mode [43] since the polysilicon constituting the body of the transistor is lightly n-doped
with a uniform profile or even left undoped. This reduces the manufacturing complexity
of the p-n junction along the vertical direction of the plugs (also called pillars). The CG
plate intersection with a pillar maps a single memory cell. Each NAND flash string of cells
is connected to a BL contact via BLS, whereas the bottom of the string is connected to a
common source diffusion formed directly on the process substrate made of silicon.

3.2. NOR Flash Memory

Figure 2 (right) illustrates the basics of NOR flash memory as well, which gets its
name from its resemblance to the pull-down network of a NOR gate. While the NOR
structure does contain pages, it does not access data by entire pages at a time as in NAND
flash. The individual memory cells are connected in parallel, and enough connections are
made among bit, word, and source lines to make random access (or byte-level reading and
writing) possible. Reading is faster in NOR flash than it is in NAND flash for this reason.
As an example of operation, to read a value from a cell, the source lines and a specific word
line are asserted. The addressed cell’s value can then be determined from its corresponding
bit line via a sense amplifier. The downside of the NOR structure is that the memory
density is lower, writing and erasing takes longer, and its random access capability makes
it more expensive than NAND flash. NOR flash is commonly used for code execution,
networking device memory, and can serve as a stable replacement for EEPROM (electrically
erasable programmable read-only memory) integrated into microcontrollers. It is also used
in medical devices and various scientific instruments.

Flash Memory Storage Configurations: At the cell level, flash memory will usually
have either a single-level cell (SLC), multi-level cell (MLC), triple-level cell (TLC), or quad-
level cell (QLC) storage capability. These options allow for either one, two, three, or four
bits to be stored per cell, respectively. As far as storage density goes, QLC wins the day
and is also the cheapest of these four options. However, as more bits are packed into one
cell, reliability and speed are sacrificed. SLC storage is the most reliable and fastest overall,
as writing a single bit to a cell takes less time than writing multiple. Figure 3 displays the
basic concept of these four storage options.

Figure 3. Flash memory cell capacities (SLC, MLC, TLC and QLC).



Cryptography 2021, 5, 7 8 of 29

4. Sources of Process Variation in Flash Memories

Process variations are intrinsic, naturally occurring sources of entropy created in the
fabrication process of ICs. Process variations are exploited for various hardware security
primitives due to their uncontrollable but reproducible randomness [44]. They are also
common in flash memories and mainly come from random dopant fluctuations (RDF).
The RDF fluctuations can be induced by traditional flash programming commands that are
standardized in the Open NAND Flash Interface (ONFI) [44]. This leads to more flexible
flash memory-based hardware security primitive solutions that can be introduced through
a variety of implementations such as Read Disturb, Program Disturb, Program/Erase
Interrupt, Program/Erase Latency, and Random Telegraph Noise (RTN). The following
subsections will discuss each of these in detail (concept and impact).

4.1. Read Disturb

Concept: Read disturb errors are caused by repeated readings from flash memory pages.
The page that is repeatedly read will cause the threshold voltages to subtly increase for
surrounding cells in a neighboring page. Figure 4a highlights the neighboring flash cells
that are affected by read disturb. This threshold voltage drifting arises because NAND
flash cells are organized in series. Therefore, each cell must be turned on to a high voltage
to allow a selected cell to be read. This voltage can be high enough to unintentionally
cause electrons to be tunneled across the oxide layer of cells in neighboring pages [24].
This induces bit flips from the logical “one” to the “zero” states that disturb the original
contents in those cells. As flash density increases, this effect is intensified as the memory is
scaled down to smaller sizes [44].

(a) (b)

Figure 4. (a) Affected cells from Read Disturb and (b) affected cells by Program Disturb.

Impact: As a source of process variation, read disturb can be implemented through
a standard interface common to all flash devices. However, read disturb can take many
consecutive reads to have a pronounced effect on the logical cells of flash cells. In [11],
10 million reads were needed to create effective differentiation between signatures from
different blocks in MLC chips, which took around six hours. This approach may not be
suitable to generate hardware security primitives alone and may require other operations
to put flash cells in more unstable states to visualize the effects of read disturb.

4.2. Program Disturb

Concept: Program disturb is created by erasing a single block and then repeatedly reprogram-
ming a page in the block to physically affect adjacent cell values. Like read disturb, program
disturb will affect cells in the nearby vicinity of the programmed cell. However, program
disturb affects only physically adjacent cells due to parasitic capacitive coupling. Figure 4b
shows the flash cells that are affected by a program operation to a single cell [45]. This cou-
pling causes elevated voltage stress that alters the threshold voltage level of neighboring
cells channeling electrons onto the floating gate of the flash cells.



Cryptography 2021, 5, 7 9 of 29

Impact: As an exploitable process variation, program disturb results in unintended
programming of nearby cells. Since the integrity of the oxide layers in nearby cells is also
degraded over time (due to increased program/erase (P/E) cycle stress), this can increase
the unintentional tunneling of electrons onto the floating gate. Therefore, program disturb
has been used as a source of entropy for both TRNG and PUF applications.

4.3. Program/Erase Interrupt

Concept: Program/Erase Interrupt is a method of aborting the “programming” or “erase
operations” of a particular flash module. This can cause cells to be in intermediate states due to a
partial program or partial erase. Due to flash modules taking more than a single clock cycle
to execute either a program or erase, a “RESET” command can be issued to interrupt the
execution of the program/erase through the standard flash interface. This interrupts the
programming to allow for flash cells to be partially programmed or erased and to put into
intermediate states that can allow other, less noticeable process variations to flip the logical
values of flash cells [46].

Impact: This process variation extraction method has been used for a wide variety of
characterizations, ranging from quantifying radiation damage to unique signature genera-
tion. Program/erase interrupt is visualized in Figure 5. Here, the data line “DX” is writing
data to a flash block. The Cycle Type line is used to visualize what commands are being
used to write or program these data to the flash block. As the “10 h” program command
is sent to the flash module, a “RESET” command can be sent while the programming is
taking place. This programming can be interrupted, leaving flash cells in an intermediate
and sensitive state [47]. To measure this interruption, the R/B register, also known as the
ready/busy register, will go low as the operation is being performed. However, when the
operation is interrupted, it will return to high as the command is interrupted and the device
has completed the programming and is in the ready state. This can allow for a speed-up of
signature and random number generation by putting flash cells into intermediate unsteady
states that are extremely sensitive. It can also be used to provide tunability to specific
hardware security primitives. For example, Wang, et al. [45] used partial programming to
tune their PUF construction to allow for variable generation and robustness.

Figure 5. Program/Erase Interrupt Scheme [48].

4.4. Program/Erase Latency

Concept: Program/Erase Latency measures the latency between particular programming
schemes of various blocks and pages. Latency is described as the required waiting time
before another operation can be executed and this time varies during a flash block’s
lifetime. Figure 6 highlights the timing diagram for a programming/erase latency scheme.
This is visualized by monitoring the ready/busy (R/B) register in a flash chip as shown.
While programming is occurring, the R/B register will go low for a set period of time until
the specified operation is complete. This time frame is called the “program/erase execution
time”. The program/erase execution time can be utilized to measure the latency values of
a previous operation.

Figure 6. Program/Erase Latency Scheme [48].



Cryptography 2021, 5, 7 10 of 29

Impact: Latency has been used as flash security feature in [11,49]. As devices age,
their latency values will also change due to oxide degradation from increased P/E stress.
This latency value can also vary for a variety of flash devices, making it difficult to pre-
dict [48,50]. However, latency values can also lack a wide range of values required for
the successful digitization of the latency information [11]. This can be problematic for
latency-based hardware security primitives.

4.5. Random Telegraph Noise (RTN)

Concept: RTN is a type of noise found in semiconductors and very thin oxide gate films.
It is caused by electron capture/emission traps that have become more pronounced as
flash memory has scaled down and bit per cell density is increased [51]. Figure 7 shows a
general idea of RTN process variation. In this figure, the threshold voltage changes for a
given trap, emission and capture. This trap occurs due to oxide defects in the floating gate
structure. This trapped electron can either be captured from the drain current or released
into the drain current. This added or removed electron causes an abrupt change in the
drain current, which is demonstrated in Figure 7. Furthermore, this voltage swing from
RTN is worsened by increased program and erase cycling wearing down the quality of the
tunnel oxide, causing pronounced RTN effects during a flash cell’s lifetime [52]. RTN was
originally not a severe source of noise until recent advances have aggressively scaled down
the thin oxide films. For instance, in recent NAND flash implementations, the threshold
voltage swing has been as high as a full volt (one volt) at a single node [51].

Figure 7. Random Telegraph Noise from trap, emission, and capture [53].

Impact: RTN has rarely been used for flash hardware security primitive applications
due to its recent prominence. However, a key contribution of RTN as a source of entropy is
that it is based on quantum mechanical probabilities, which is independent of thermal noise
or other external properties. This makes it a very reliable entropy that can be considered for
hardware security primitives within flash, especially due to the recent aggressive scaling
down of flash memories.

Table 1 highlights which of these process variations are exploited as sources of entropy
in both the flash PUF and TRNG literature. A detailed review of these constructions will
be presented in the following section.



Cryptography 2021, 5, 7 11 of 29

Table 1. History of the development of flash memory PUF and TRNG based on different process variations.

Year Publication PUF/TRNG Program
Disturb

Partial
Programming

Erase
Interrupt

Program Erase
Latency

Read
Disturb RTN

2011 Prabhu et al. [11] PUF X X X

2012 Wang et al. [53] PUF/TRNG X X

2015 Kim et al. [54] PUF X X

2015 Jia et al. [46] PUF X X X

2017 Saito et al. [55] PUF X

2018 Milenkovic et al. [3] TRNG X X

2018 Wu et al. [56] PUF X

2019 Clark et al. [57] PUF/TRNG X

2019 Poudel et al. [58] TRNG X X

2019 Mahmoodi et al. [59] PUF X

2020 Sakib et al. [45] PUF X

2020
Chakbatory
et al. [49] TRNG X

2020 Larimian et al. [60] TRNG X

5. Comprehensive Literature Review

This section is divided into three major subsections: flash memory-based PUFs,
flash memory-based TRNGs, and IC counterfeit detection techniques for flash memory.

5.1. Flash Memory-Based PUFs

The overall challenges related to PUFs are achieving advanced characteristics such as
high reliability, uniqueness, high entropy, abnormal environmental conditions resistance
(aging, voltage variations, high-low temperature, etc.), and cost effective architectures
or designs. Previous research has shown that memory-based PUFs are one potential
PUF architecture that can meet almost all requirements for creating cutting edge, attack-
resilient PUFs. In particular, flash memory-based PUFs have seen rapid development
from 2012 to 2020, with two major chronological time periods of development denoted as
the first and second phase. Flash memory PUFs have been created for a variety of flash
architectures and have a variety of design parameters. As more flash PUF technology
matures, more emphasis is placed on tuning advanced PUF characteristics such as aging
resistance, throughput, and ease of implementation.

• First Phase: This phase comprises the first PUF constructions. These constructions
may often be proofs of concept, be based on one single process variation, and do not
deal with more advanced considerations for PUF constructions such as hackability,
throughput, or temperature/aging resistance.

• Second Phase: This phase tries to combat these shortcomings and comprises construc-
tions made within the last three years. These PUFs consider more dynamic factors in
their constructions, such as resistance to machine learning, expanding the CRP space,
and the aforementioned considerations: throughput, aging, etc.

5.1.1. First Phase of Development

One of the first definitive instances of a flash-based PUF occurred in 2011 by
Prahbu et al. [11]. This work highlights seven separate mechanisms for PUF generation
with NAND flash memories. Prabhu et al. [11] characterized read disturb, program disturb,
and then several different forms of latency such as “page-write latency”, “programming
latency”, and “reading latency”. These PUFs solely used standardized flash programming
commands ubiquitous to all flash chips, required no peripheral hardware, and did not



Cryptography 2021, 5, 7 12 of 29

mix different programming variations. The results demonstrated that flash PUFs could be
created from repeated read operations, repeated program operations, or by analyzing the
latency of various operations. However, many of these PUFs were not able to generate PUF
signatures in reasonable time frames, and the PUFs that were generated quickly started
to lose accuracy and were vulnerable to hacking. For example, read disturb flash PUFs
had the highest accuracy but took over 6 h to generate. Conversely, program latency
only took one to three seconds to generate 100 measurement signatures, with greater than
10% reduction in hamming distance. Furthermore, the digitization of the latency values
made the construction vulnerable to forging attacks. Although a great step in proving
the viability of flash PUFs, these constructions had severe throughput limitations, making
them hardly usable in a real-time system.

Another paper from this time frame was from Kim et al. [54], who created a flash
PUF in 2015 by programming a flash page to the statistical median of its threshold volt-
age. This threshold voltage range was then divided into a high and low section, with
the lower half decoded as a logical “1” and the upper half as a logical “0”. After cells
were programmed to this statistical median, the cells were read, and depending on the
program/erase efficiency, cells were interpreted as logical “1” or “0”. This paper produces
a proof of concept for the possibility of more sophisticated PUF constructions. Since this
construction only performs a single partial program, it is a faster PUF construction than
that proposed in [11], which requires millions of reads. However, this method lacks a
detailed explanation of its estimated throughput, and the method of approximating the
statistical mean of the threshold voltage for the logical “0” state, since threshold voltages
are proprietary as shown in [24].

The next paper from Wang et al. [53] proposes a physical implementation of a tech-
nique that was successful in generating unique PUF signatures with intra-page Pearson coef-
ficients, with an average Pearson coefficient that rivaled those presented in Prahbu et al. [11]
and Kim et al. [54]. Most importantly, the throughput for this device was around 20 kb/s.
This shows a substantial improvement from the generation delays within the PUFs pre-
sented by [11] that took multiple hours to generate signatures with comparable robustness
and uniqueness. The security of this construction was also investigated. In regard to hacka-
bility, this construction is vulnerable to replay attacks. However, the attacker would have
to store the fingerprints from every page in order to ensure a complete modeling attack
which improves upon the forging attacks represented in Prahbu et al. [11]. Since the bits
are stored as a 10-bit number, this would require 10× the chip storage. Enhanced modeling
attacks such as machine learning or power analysis were not considered.

After Wang et al. [53], Jia et al. [46] used a technique in a very similar manner to
the proposed method in [53]. They added two post-processing techniques, “Bit Mapping”
and “Position Mapping”, to extremely enhance bit reliability with error rates less than
10−6, allowing for processed outputs to be used as cryptographic keys with high fidelity.
This enhanced the work from Wang et al. [53] and allowed for more reliable responses on
PUFs extracted from program disturb or partial programming. Similar to the previous
papers, Jia et al. [46] do not deeply consider the hackability of their constructions and do
not consider voltage, temperature, or modeling attacks.

This first phase resulted in some of the first flash PUFs and their proofs of concept;
however, it is characterized by implementations that have practical implementation draw-
backs. This is because the PUFs solely relied on a single process variation in [11,46,53,54]
or they lacked detailed analysis of the hackability of their constructions [46,54]. This is
primarily due to the novelty of flash PUFs. Later in the literature, phase two commences,
where many more considerations are taken into account. This upcoming phase differs
from the first one as it has PUF constructs that use multiple programming variations for
process variation extraction, consider energy consumption, modeling attacks, temperature
resilience, and build architectures around specific flash memory types as phase one solely
deals with NAND flash memory.



Cryptography 2021, 5, 7 13 of 29

5.1.2. Second Phase of Development

Wu et al. [56] provides the first construction within this time period. This construction
provides a programming burst to the gate voltage, stressing the flash cells. This burst
induces current leakage into a neighboring cell. This is then connected to a sense am-
plifier and extra logic to process a PUF response bit. This construction has phenomenal
uniqueness, with an inter-hamming distance of 0.499999 (the ideal is 0.5). The randomness
was also excellent, with a hamming weight of approximately 50%. The intra-ID hamming
distance for the responses was also practically negligible, highlighting the phenomenal
reliability of the construction. Differing from the first phase PUFs, this PUF construction
is resistant to temperature stress, voltage stress, and can withstand extreme operating
temperatures ranging from 40 to 150 degrees Celsius. This improves the hackability of this
construction significantly, and it also allows for this PUF to be able to extend to automotive
applications that have extremely high temperatures.

Another paper from phase two that Saito et al. [55] published in 2017 provides a
flash PUF construction that utilizes 28-nm SG-MONOS embedded flash. This construction
is based on differential comparison between two flash cells, a posi-cell and a negi-cell.
The cells are compared without a reference voltage to avoid having to apply a threshold
voltage to the gate of the cell which prevents read disturb by allowing a read without
applying voltage to the gate. Figure 8 describes the SG-MONOS structure. Built around this
flash, Saito et al. [55] created a PUF construction with very strong uniqueness and random-
ness. Finally, the reliability was measured using an intra-PUF hamming distance which
yielded around 8.3%, which could be corrected by a novel correction scheme. This PUF also
improves to near zero reliability error and makes the construction resistant to temperature
changes. This works by increasing resistance to temperature attacks and making it applica-
ble for automotive applications since this PUF can withstand temperatures ranging from
40 to 170 degrees Celsius. This is done by using an offset read scheme that attaches to the
SG-MONOS flash cells to allow for effective “masking” of unstable bits. A drawback to this
implementation is that, on average, 47% bits were deemed unstable. Losing this many bits
may not be the most efficient use of space on the SG-MONOS flash chips since complicated
ECC may impose smaller space overhead and ensure reliability. Similar to Saito et al. [55],
Clark et al. [57] proposed a very similar method that used high performance 1.5 − T flash
cells in 2019. These flash modules condense programming execution to a single clock cycle,
making programming interrupt difficult [57]. Therefore, this PUF construction utilizes
erase interrupt, which follows very similar design principles as programming interrupt.

Figure 8. Structure of Posi-Cell and Negi-Cell from Saito et al. [55].

In this PUF construction, bits were erased to “1” in multiple cycles that were inter-
rupted. The interrupted erases were repeated until the distribution of cells was half 1s and
half 0s. Clark et al. [57] proposed a helper function known as MON1 that measures the



Cryptography 2021, 5, 7 14 of 29

numbers of “1”s and “0”s and if a response has a skewed number of “1”s—say, 55 percent—
the authors generate another response with 45 percent to balance out the number of “1”s
and “0”s, creating sufficient randomness. This is done by varying the erase interrupt
timing to adjust and tune the percentage of “1”s and “0”s. Furthermore, this work also
provides temperature and voltage tamper resistance. The next construction in this period is
ChipSecure, which is a novel reconfigurable eFlash created in 2019 by Mahmoodi et al. [59].
This construction provides a novel implementation that provides enhanced post-processing
techniques to expand the CRP space to 10211 to provide resilience to machine learning
attacks and an extremely energy efficient architecture able to operate at 0.5 pJ/b. This
paper is a clear representative example of the second time period of flash PUFs. This con-
struction was also highly reliable, with a bit error rate lower than 5%. This was achieved by
measuring gate leakage currents and induced current leakage from gate voltage variation.
With this current leakage used as a process variation, the response bits are multiplexed
and then fed into primitive blocks and then into a hidden shift register (HSR). By using
the HSR and multiplexing various response bits, the CRP space becomes significantly
larger. Furthermore, the time-multiplexing also allows for an equivalent throughput of
192.3 Mbps. Mahmoodi et al. [59] then used a multi-layer perceptron network to attempt
to attack their construction. More details of the network can be found in [59]. The success
rate of predicting a particular output bit is around 50%, which is close to the ideal of a
random 50% accuracy for predicting a “1” or “0”. This construction tackles hackability via
machine learning and a massive CRP space, presents a powerful post-processing technique,
and has very close to ideal uniqueness, reliability, and randomness metrics. Another paper,
Larimian et al. [60], will be mentioned in more detail in the next TRNG section. However,
this paper takes the construction from the Mahmoodi et al. [59] paper and builds an au-
thentication scheme around it. It does not focus on an additional novel PUF application
and so will be left out until the TRNG section.

Another second generational PUF scheme for flash memory was released in 2020 by
Sakib et al. [45], where researchers only utilized a program disturb method. This construc-
tion does not apply extra periphery hardware or multiple new process variation extraction
techniques. However, the traditional program disturb behavior was sufficiently character-
ized for individual chips to allow for a tunable PUF construction that was aging-resistant.
This scheme is easy to implement, requires no peripheral hardware, is resilient to aging,
and is extremely reliable. This PUF generator took approximately 2.2 s to generate PUF
responses from a single page. Furthermore, PUF responses of length 128 bits had an error
of less than 10−6, and responses of 20,000 bits had an extremely low error rate of 0.2%.

Furthermore, this construction has 3% to 8% intra-chip hamming distance distribution
where the ideal is 0%. This highlights the phenomenal reliability of PUF construction.
This construction has randomness within the range of 42% to 51% of “1”s within the
construction, close to the ideal value of 50%; however, it is more skewed towards “1”s than
“0”s. Finally, the PUF demonstrated phenomenal uniqueness, with results between 49%
and 51% inter-chip hamming distance distribution. This solution was enabled by creating
a model that describes the effects of aging on the bit error rate with program disturb-
based PUF techniques. Furthermore, Sakib et al. [45] created a “Golden PUF” that allows
the response bits that are noisy to be filtered out in a manner similar to Saito et al. [55].
Although this solution does not include many of the post-processing techniques mentioned
in the previous paper from Mahoodie et al. [59], it provides a lightweight, aging-resistant,
and extremely reliable construction that requires no peripheral hardware, making it an
easy-to-implement, lightweight solution. This is due to the deeper characterization of
program disturb to generate new signatures.

This second phase deeply focuses on practical PUF implementations and results in
PUF constructions that are much more practical for real-time hardware security measures.
For example, Mahmoodi et al. [59] consider new ways to drastically increase the CRP
space while also being one of the only works to perform modeling attacks on their PUF
construction with an advanced deep learning attack. Sakib et al. [45] provides a deeper char-



Cryptography 2021, 5, 7 15 of 29

acterization of program disturb’s effects over a device’s age, providing an aging-resistant
PUF, which is an extremely important consideration for any security primitive designed
within flash memory. This is still a very active area of research that has tremendous room
for growth, and new research directions will be discussed in greater detail in Section 6.

5.2. Flash Memory-Based TRNG

The overall challenges for TRNG models are (i) designing cost-effective and lightweight
techniques that require minimal peripheral hardware as well as (ii) providing high entropy
and throughput with a large volume of random bit strings. There have been various
research and studies in this regard and memory-based models are becoming popular and
potential sources of entropy. In particular, the principle focus in advancing flash TRNG
constructions is maximizing throughput while using as minimal extra post-processing
as possible. Furthermore, many flash architectures need different TRNG models; therefore,
various flash memory designs require novel and unique entropy extraction techniques.
This section is broken up into sections as the literature is more sparse and has fewer pub-
lications than flash PUFs. However, the development of flash TRNGs is still clearly seen
throughout the progression of the literature.

Some of the first work with flash TRNGs came from Wang et al. [53] in 2012. This first
TRNG construction exploits thermal and RTN noise from NAND flash memory to create
unique random numbers. This technique initially utilizes partial programming to char-
acterize whether cells are experiencing solely RTN or RTN and thermal noise combined.
With this characterization, the cells are programmed a sufficient amount to become sen-
sitive to slight perturbations from RTN or thermal noise. This characterization provides
two important timing characteristics for TRNG behavior. The first is up-time, which is a
sequence of time in the erased state, and the second is down-time, which is a sequence of
time in the programmed state. To produce random numbers, these two time sequences
are used to make a binary number sequence. Next, Von Neumann debiasing is used as
a post-processing technique. However, the duration of the partial program is dependent
on whether the flash cell is experiencing solely RTN noise or both RTN and thermal noise.
Combining the up-down, down-time, and the characterization of the source of the noise,
the TRNG is able to generate a random number. The TRNG had average performance
throughput anywhere between 848 bits per second to 3.37 Kbits/s. This variation is due
to the intense pre-processing requirements that are required to identify the type of noise
present in the flash cells. However, the TRNG passed all of the NIST test requirements for a
TRNG without having to do any post-processing. Furthermore, temperature and aging only
increase the effects of the RTN or thermal noise. This increase in randomness does not hinder
the construction, which is different from the tight uniqueness, randomness, and reliability
requirements for PUFs. This construction is a phenomenal stepping stone for other construc-
tions that will exploit multiple process variations, enhance throughput, provide specialized
implementations, or mix multiple process variation extraction techniques.

In a 2018 paper by Milenkovic et al. [3], the authors create a TRNG based on program
disturb and read noise, which combines program and reading disturbs. A block is first
erased and then a page is programmed in a checkerboard manner, alternating between
“0”s and “1”s. This pattern is repeatedly reprogrammed to induce program disturbs in
neighboring cells within the page. Then, the cells are read a repeated number of times,
classifying cells that are unstable and oscillate between state “1” and “0”. These cells had
their threshold voltages moved so close to the logical “0” state that subtle noises such
as RTN and thermal noise caused these threshold voltage fluctuations. This TRNG also
passed all NIST randomness tests. Furthermore, this TRNG construction was functional
through temperatures ranging from 85 to −10 ◦C, and there was an increase in TRNG
performance as the device was aged through additive P/E cycling. Regarding throughput,
this construction reported an estimated throughput of 1 Mb/s. This exceeded previous
work from Wang et al. [53]. This combination of using program disturb and read disturb
enhances the work from Wang et al. [53], making the construction more implementable.



Cryptography 2021, 5, 7 16 of 29

In 2019, Clark et al. [57] extended a partial programming technique to create a TRNG based
on interrupted erasure on a novel flash architecture. Since high-performance 1.5-T flash
chips are able to execute programming in a single clock cycle, it is not possible to interrupt
these commands from the digital interface. Therefore, an interrupted erasure, which takes
more than one clock cycle, was characterized and interrupted to generate random numbers.
By slightly reducing the erase voltage, random numbers were able to be created that passed
the NIST test for randomness. However, several tests did initially fail and helper data had
to be used to refine the generated random numbers to ensure true statistical randomness.
After all of these changes, the minimum entropy was 0.90 to 0.91, making the construction
a strong TRNG. Even though a throughput was not given, the TRNG construction was
successful under a variety of aging, temperature, and voltage tests.

This highlights the maturation of the literature covering flash TRNGs, as more sophisti-
cated considerations are taken into account for novel architectures. In 2019, Poudel et al. [58]
also used a new technique to perturb split-gate flash memory cells. This is a flash cell that
is commonly used within embedded microcontrollers. Since NOR flash is byte-addressable,
these flash cells are commonly used for code execution. By using onboard NOR flash,
Poudel et al. [58] create a TRNG engine. This construction programs the NOR flash as
close as possible to its threshold voltage and then applies multiple reads to the cells, al-
lowing read noise which is a combination of thermal and RTN noise to perturb the cells
randomly. This interrupt is done by issuing several timed NOP commands from the micro-
controller and then issuing an emergency exit command. Poudel et al. [58] also incur an
extra software delay and specifically time the emergency exit command—this is optimized
to provide the highest throughput for the TRNG. Furthermore, this delay is also based on
the processor speed on the microprocessor itself. This is also calibrated to provide more
tuning to programming interrupt, and the results from Poudel et al. [58] show that the
finer clocking resolution does lead to more random numbers being generated, leading to
a higher TRNG throughput. The construction passed all NIST tests for randomness after
Von Neumann debiasing, and the TRNG engine achieved a peak of 68,200 bits per second.
Furthermore, this construction also endured aging and temperature variation. Although lower
temperatures reduced the number of “good” bits, the RTN is a quantum noise that continues
to create sufficiently random bits for the TRNG engine. This work not only provides a TRNG
engine in an IC, but it implements the IC in a microcontroller. By using the onboard micro-
controller memory, this construction moves the literature closer to providing fully realizable
TRNG engines embedded in flash on commodity microcontrollers.

One of the most recent papers discussing flash TRNGs was released by Chakba-
tory et al. [49]. This paper further seeks to analyze the process variations seen through
write and erase latency operations in NOR flash and offers a TRNG engine that is imple-
mentable in off-the-shelf NOR flash memory. This greatly expands the ease of integration
for designers, as the construction does not require peripheral hardware and overly com-
plex pre/post-processing. Their approach even generalizes this analysis to other forms of
non-volatile memory, namely resistive non-volatile memory, to extend the discussion and
knowledge, exploiting process variations seen in writing and erasing latency. The latency
values are extracted by polling the write-in-progress bit in non-volatile memories. This bit
is “0” for an uncompleted write/erase operation and is “1” for a completed operation.
Then, the random numbers are generated by measuring the write latency of various data
patterns. This paper also used an XOR-based post-processing technique that reverses and
returns the bit-wise XOR of the raw latency values. All the NIST tests were passed and
the NOR flash had a throughput of 0.05 kb/s. However, this throughput may have been
limited by the SPI interface in the test bench set-up.

Finally, the literature reaches one of the most recent constructions that designs an IoT
authentication scheme with the TRNG engine implementation as well. This flash TRNG
implementation is used in conjunction with an aforementioned flash PUF design from
Mahmoodi et al. [59]. The TRNG engine is used as a nonce for the PUF challenge, which
adds an extra layer of security to prevent replay attacks and masking PUF challenges and



Cryptography 2021, 5, 7 17 of 29

responses by being encrypted. Furthermore, by condensing both the TRNG engine and the
PUF engine, energy-efficient designs that use 25% less space than standalone designs can
be used. Although this method does utilize symmetric encryption and decryption schemes,
which can incur extra overhead, it utilizes this together with PUF and TRNG constructions.
More on the construction can be read in [60]. This construction utilizes a TRNG engine
based on RTN and thermal noise (also known as flicker). This is done by applying a read to
the same source line in two consecutive cycles on a NOR flash chip. This TRNG engine had
a Pearson coefficient of 0.003 with PUF responses. This ensures that nonce from the TRNG
and PUF response are not interrelated. Furthermore, the Shannon entropy was measured
as 0.99958 and 0.99998 on the same dataset for the PUF and TRNG responses; this rein-
forces the claim that the PUF and TRNG outputs are not correlated and have maximum
uncertainty. Furthermore, the probability mass function of the TRNG output highlights the
0.5 probability that the generated number will be “0” or “1”. The autocorrelation of the
10-k-bit-long TRNG outputs perform ideally and have minimal correlation with lagged
versions of the same input. This paper also further validates the TRNG construction by
measuring its resistance to aging, temperature changes, and machine learning attacks,
specifically multilayer perceptron (MLP) and long short-term memory models (LSTM).
Neither of these is successful in predicting TRNG outputs. Finally, the output of the system
is 192.3 Mbps and the TRNG passed all NIST tests. By providing a fully realizable construc-
tion tested against sophisticated machine learning attacks and an authentication scheme
for a real IoT system, the literature has moved the flash TRNG into a much more realizable
construction closer to being integrated into mainstream real-time systems.

Tables 2–4 illustrate the various qualities of flash-based PUFs and TRNGs. Table 2
is a classification of PUF and TRNG constructions based on their resistance to a variety
of environmental effects such as temperature, voltage, and aging and also highlights the
various quality tests used to gauge PUF/TRNG performance. An important note regarding
the quality tests is that the statistical tools used to characterize their performance vary
per implementation. Therefore, IDEAL values were added to give more context to the
statistical test. Table 4 classifies PUF/TRNG constructions based on their configurations and
performance metric. This table highlights whether a particular construction is updatable
through software/firmware, whether periphery hardware or ECC is used, and investigates
reliability error and estimated throughput.

Table 2. Classification of publications on flash-based PUFs and TRNGs according to various environmental conditions and
quality tests.

Author(s) Aging
Resistant

Temperature
Resistant

Voltage
Resistant

Inter-Page
Dependency

Intra-Page
Accuracy NIST Test

Physical Unclonable Function

Prahbu et al. [11] No No No

Pearson Coefficient.
Program Disturb:
0.012
Read Disturb:
0.0
Program Latency:
0.02 to 0.03
IDEAL: 0.0

Pearson Coefficient.
Program Disturb:
0.94
Read Disturb:
0.98
Program Latency:
0.83–0.84
IDEAL: 1.0

N/A

Wang et al. [53] No Yes No Pearson Coefficient
Average: 0.0076

Pearson Coefficient
Average: 0.9722 N/A



Cryptography 2021, 5, 7 18 of 29

Table 2. Cont.

Author(s) Aging
Resistant

Temperature
Resistant

Voltage
Resistant

Inter-Page
Dependency

Intra-Page
Accuracy NIST Test

Kim et al. [54] No No No None given None given N/A

Jia et al. [46] Yes Yes No

Inter Chip Variation.
Partial Program:
49.93%
Partial Erasure:
49.95%
Program Disturb:
46.86%
IDEAL: 50%

None given N/A

Clark et al. [57] Yes No No None given None given N/A

Sakib et al. [45] Yes Yes No
Inter-Chip Hamming
Distance: 49% to 51%
IDEAL: 50%

Intra-Chip Hamming
Distance: 0.2% to 1.7%
IDEAL: 0%

N/A

Wu et al. [56] Yes Yes Yes
Inter-Chip Hamming
Distance: 0.499999
IDEAL: 0.5

Intra-Chip Hamming
Distance: 0%
IDEAL: 0%

N/A

Saito et al. [45] Yes Yes Yes
Inter-Chip Hamming
Distance: 49.4%
IDEAL: 50%

Intra-Chip Hamming
Distance: 0%
IDEAL: 0%

N/A

Mahmoodi et al. [59] Yes Yes No
Inter-Chip Hamming
Distance: 50.3%
IDEAL: 50%

Intra-Chip Hamming
Distance: <5%
IDEAL: 0%

N/A

True Random Number Generator

Wang et al. [53] Yes Yes No N/A N/A Yes

Clark et al. [57] Yes Yes No N/A N/A Yes

Ray et al. [3] Yes Yes No N/A N/A Yes

Chakraborty et al. [49] Yes Yes No N/A N/A Yes

Larimian et al. [60] Yes Yes No N/A N/A Yes

Poudel et al. [58] Yes No No N/A N/A Yes

Table 3. Classification of publications on flash-based PUFs and TRNGs according to configuration and performance.

Author(s) Software/Firmware
Updatable

Estimated
Throughput ECC Peripheral

Hardware
Reliability

Error

Physical Unclonable Function

Prabhu et al. [11]

Yes, through
standardized
flash commands
(RESET, READ,
PROG, etc.)

None given No No

Not investigated.
Each PUF signature
is run until achieved
sufficient accuracy.

Wang et al. [53]

Yes, through
software-based
classification of process
variations (RTN and
/or thermal noise)

848 bits/s
to 3.37 kb/s No No

Aging Error:
10−4 exceeding
500,000 P/E cycles

Kim et al. [54]

Yes, through
standardized NAND
flash commands
(PROG, READ,
etc.)

None given
Yes,
fuzzy
extractor

No
Reliability Error:
2% in raw
PUF generation



Cryptography 2021, 5, 7 19 of 29

Table 3. Cont.

Author(s) Software/Firmware
Updatable

Estimated
Throughput ECC Peripheral

Hardware
Reliability

Error

Jia et al. [46]

Yes, through
standardized
flash commands
(ERASE, READ,
and PROG)

7.35 kb/s
to 22.38 kb/s No

Yes, bit and
position mapping

Reliability error:
128 bit key generated
<10−6

Clark et al. [57]
Yes, through 1.5 T type
flash interfaces
(ERASE, RESET, etc.)

None given No
Yes, helper

function MON1 None given

Sakib et al. [45]
Yes, adaptive through
standardized flash
command (PROG).

∼16 kb/s No No None given

Wu et al. [56]
No, uses custom
alterations of
flash cells

None given No Yes

<500 ppm in
differential mode.
0 in single
end mode

Saito et al. [55]
No, uses custom
alterations of
flash cells

None given No Yes approximately 0%

Mahmoodi et al. [59]
No, uses custom
alterations of
flash cells

192.3 Mbps No Yes <5%

True Random Number Generator

Wang et al. [53]

Yes, through
software-based
classification of process
variations

None given No No N/A

Clark et al. [57] No None given No No N/A

Milenkovic et al. [3]

Yes, through
standardized
flash commands
(PROG and RESET)

None given No Yes N/A

Chakraborty
et al. [49] No

700 k cycles:
7.2 × 108 bits

Yes, XOR
circuit No N/A

Larimian
et al. [60] No 192.3 Mbps Yes Yes N/A

Poudel et al. [53]
Yes, uses
microcontroller
flash memory.

123 processor
clock cycles No No N/A

Table 4. Characterization of performance qualities and types of different IC counterfeit detection strategies.

Author
and Year

Passive/
Active/
Sensor

Cost Programming
Technique Accuracy Usage

IC Counterfeiting Detection

Tehranipoor
et al. [11] (2014) Active 100%

None relies on
physical inspection. High

Any type of usage
can be detected
by physical
inspection.



Cryptography 2021, 5, 7 20 of 29

Table 4. Cont.

Author
and Year

Passive/
Active/
Sensor

Cost Programming
Technique Accuracy Usage

Huang et al.
[53] (2015) Passive Low

Program variation
and current
leakage.

100% accurate
Test is designed
for extremely aged
components

He et al.
[54] (2016) Sensor Medium

None, uses EM
probe to measure
counterfeit

Highest Z score is
70 times greater for
counterfeit device.

Test is designed
for extremely aged
components

Ye et al.
[46] (2017) Sensor

Ring oscillator,
EM-aging

sensor,
and antifuse

memory with
a novel
sensing

architecture

Wire degradation
and RO frequency
failure

100% accuracy
Over 3 months
of aging

Guo et al.
[57] (2017) Passive

One page
required to
characterize
P/E stress

Bit error rate
from Program/
Erase Cycling

100% accuracy
Detected with as
little as 5% of flash
life.

Kumari et al.
[45] (2018) Passive Low

Bit Error Rate
and P/E Latency 100% accuracy

Detected with as
little as 3% of flash
lifetime

Chattopadhyay
et al. [45] (2019) Passive Low

Bit Error Rate
and P/E Latency
combined with
machine learning

Greater than
97.5% accuracy

Detected with as
little as 0.05% to
0.95% of flash
lifetime.

Liu et al.
[54] (2019) Sensor Five extra cells

Two exposed
floating gate cells.

Bit line fluctuations
were observed
when changes in
temperature, humidity
and dust were
induced.

N/A

Poudel et al.
[45] (2020) Passive Low

Partial program
combined with
erasure latency

A watermark is
imprinted to detect
counterfeits

Applicable to any
NOR flash chip.

5.3. Flash IC Counterfeit Detection

Integrated circuit (IC) counterfeiting is a severe problem affecting the global supply
chain that introduces reliability and security concerns that affect a wide range of industries,
from automotive electronics to sensitive military constructions. Furthermore, it increased
by a factor of four just from 2009 to 2014—this has had extremely damaging effects, from
fiscal loss to destroyed user confidence. Counterfeit electronics are generally classified into
seven main categories: recycled, remarked, overproduced, defective, forged documentation,
and tampered.

Furthermore, there are typically two main methods for counterfeit detection: physical
inspection and electrical testing. Physical inspection can be one of the most advanced and
comprehensive ways of detecting counterfeits; however, physical inspection is more costly
and difficult to automate. Research in IC counterfeit detection faces various challenges such
as (i) creating the least invasive techniques for successful detection since many detection
methods damage the memory units which results in having aged chips; (ii) many of the
counterfeit detection techniques also need expensive equipment. This is a big challenge
since academic research laboratories need to be equipped with costly hardware.



Cryptography 2021, 5, 7 21 of 29

The first paper for detecting IC counterfeiting with flash chips uses the physical
inspection methodology proposed in 2014 [60]. In this paper, the advanced imaging pro-
cessing techniques were considered, utilizing electron scanning microscopy coupled with
3D X-ray microscopy to detect counterfeits in five Intel flash memory ICs. The 3D scanning
electron microscope technology (SEM) was able to detect the effects of sanding—this can
facilitate the process of automating IC device scanning to detect counterfeit electronics that
have been sanded. Furthermore, roughness patterns and coated/filled dimples were also
measured to identify the effects of chip recycling. In addition, 3D and 2D X-ray results
were used to distinguish incorrect die and chip orientation, which is another sign of IC
counterfeiting. Along with improper orientations, die face delamination was also exposed
to counterfeit chips through this technique. By combining both X-ray techniques and
scanning electron microscopy techniques, physical inspection was able to identify every
counterfeit intel flash chip.

This physical inspection presents strong results; however, it requires expensive equip-
ment, subject matter experts to analyze the images, and is difficult to automate. In fact,
the same authors would produce another method that relies on process variations extracted
from partial programming in order to noninvasively detect IC counterfeits. This paper,
released in 2017 from Guo et al. [61], is validated with 200,000 flash memory pages that are
able to detect as little as 5% usage in flash memory chips with 100% accuracy. This is done
by stressing one page to the end of its life in order to characterize the P/E cycle endurance
of the entire chip. This then allows for characterization for a model of the ideal program-
ming duration that varies throughout the lifetime of the flash memory. The amount of
cells that flip during a varied programming time is recorded and each iteration is stored.
This builds the enrollment model which is used later on to detect the counterfeit chips.
This is the verification step which randomly chooses other papers to apply a partial pro-
gram of a particular duration to randomly selected pages to see if the chip conforms to
the model. This ID generation used with the counterfeit model that verifies if a chip is
counterfeit or not is much less invasive and allows researchers to move away from the
inherent limitations of advanced physical inspection.

Another paper from Kumari et al. [62] uses less invasive techniques to extract latency
values from aged flash chips in order to detect counterfeits. Instead of a partial program-
ming burst, the latency of different operations such as program and erase is used. If a
page is aged through P/E cycling, the oxide layers in the flash cells wear down due to
hot electron injection or quantum tunneling stress. Therefore, this drastically increases the
erase time since the electric field is weakened. The program is slightly lengthened; however,
it also increases the bit error rate (BER) since this induces reprogramming. Furthermore,
the failed bit count is also increased because read noise increases in aged chips due to the
defects in the oxide layers. These process variations bring great insight into the age of the
chip, extending previous work by relying on more than one process variation and having
greater accuracy in IC counterfeit detection. This work provides an IC counterfeit detection
with 100% accuracy that only requires around 3% of the total endurance.

The next paper, released in 2019 from Chattopadhyay et al. [63], actually builds on the
same technique presented above. However, this implementation uses machine learning to
assist in the counterfeit detection of flash chips. Logistic regression (LR), support vector
machines (SVM), and artificial neural networks (ANN) were used. This expanded the
work from Kumari et al. [62], enhancing their detection scheme by achieving a counterfeit
detection accuracy greater than 97.5% , only requiring 0.05% to 0.96% of the total P/E
cycling endurance used. Furthermore, the author used three extra features besides the erase,
programming, and bit error metrics used in the previous work to increase the accuracy.
These three features measure the difference between neighboring blocks on the same chip.
This allowed for greater accuracy and enhanced the process variations by introducing
block differences within the same chip. These results were experimentally validated on
Micron MLC and SLC chips and Toshiba MLC chips. This work does a phenomenal job of
extending their technique to different SLC and MLC architectures and different IC vendors.



Cryptography 2021, 5, 7 22 of 29

This is crucial for extending existing techniques to allow them to be implementable on a
wide assortment of flash memory chips.

The next detection technique from 2020 is from Poudel et al. [58], who also released
a novel TRNG implementation for flash chips. However, this technique is a watermark-
ing scheme for NOR flash chips to detect flash counterfeits. This technique imprints a
watermark on NOR flash memory cells and then extracts process variations through the
digital interface of NOR chips. Furthermore, this construction is completely agnostic to
the device type. As long as the device is a NOR chip, it is able to be watermarked without
requiring peripheral hardware through standardized flash memory commands. Secondly,
this implementation is particularly useful as it does not require maintenance of chip-specific
databases or require authentication with the original chip manufacturers. These are huge
improvements that make this watermarking scheme much more adaptable and enhance
previous works. This scheme performs a full program and then performs a partial erasure
that is interrupted. This results in cells that are only partially programmed, and these cells
are read N times, where N is an odd number. Then, odd parity will be chosen for the bit.
The erasure interruption is increased and the results are recorded until the time reaches the
normal erasure time. Since oxide degradation due to P/E cycling is irreversible, it will be
extremely difficult for attackers to watermark circuits that are recycled. Circuits that are
recycled will have greater P/E cycling stress and therefore it will be much more difficult to
accurately imprint a forged watermark. This scheme was very successful in providing a
watermarked IC counterfeit detection scheme for flash memory.

Another approach to counterfeit detection is creating counterfeit detection sensors
rather than exploiting changes with flash chips themselves. Works have been proposed
highlighting embedded sensors for IC counterfeit detection.

A work detailing this sensor is from Liu et al. [64], released in 2017. This work uses an
eflash-based powerless non-volatile sensor that uses floating gate technology exposed on
the integrated circuit. Without power, this sensor still experiences charge fluctuations from
changes in humidity, temperature spikes, or increased dust particle density. When checking
for tampering, this sensor can be powered on and analyzed. This sensor is designed with
five floating gates comprising two counterfeit detection sensors. One of the sensors is
the testing sensor while the second is the reference sensor. The testing sensor requires
one program in order to have electrons deposited on its floating gate; after this, though,
the sensor does not need power and is not programmed again. By using a reference
sensor, the testing sensor has its threshold voltage changes amplified by thirty times
what they usually are. Then, the bit line voltage is converted into a frequency output
by a voltage controlled oscillator digitized as read out. Temperature, humidity, and dust
particulate tests were done and successfully characterized by fluctuations in the frequency
output. Similar ideas with exposed sensors have been used for IC counterfeiting using EM
emanations and statistical methods from Huang et al. [65] and Ye et al. [66], respectively,
in order to detect counterfeit electronic goods.

6. Potential Future Research Directions

The extent to which flash memory-based security primitives have been explored has
just begun to scratch the surface. There are many potential research directions to this date,
and in this section, we attempt to provide insight into those areas. We highlight some of
the challenges that currently exist in flash-based hardware security solutions and offer up
what we believe could benefit from future research and development.

6.1. Enhancing Existing 2D Flash Memory Features

In many of the presented PUF/TRNG constructions in Tables 2 and 4, signature/number
generation time has been decreased by mixing multiple approaches or by adding a deeper
characterization to an existing approach. However, characterizing what programming
schemes to mix and combine is not thoroughly understood. Researchers in [11] allowed for
a great first step in understanding how each of these programming commands can be used



Cryptography 2021, 5, 7 23 of 29

individually. However, some schemes that employ programming disturb and read dis-
turb may be enhanced through a different combination of various programming methods.
This has happened in the literature; however, there is little characterization or exploration
of combining multiple programming processes to increase PUF or TRNG throughput by
exploiting their trade-offs. On the other hand, deeper characterization of existing disturbs
can also provide ways to enhance PUF/TRNG designs as well. Sakib et al. [45] were
able to enhance program disturb-based PUFs by characterizing the program disturb effect
on threshold voltages and by analyzing the effect of program disturb through a device’s
aging. This allowed for a high-throughput PUF that also had aging resistance due to
this characterization. By deeply characterizing the effects of these programming styles,
it may add greater understanding of how process variations occur and how they change
over time. This deeper characterization can be used to enhance many features of existing
PUF/TRNG constructions. This development was seen in the “third phases” and the
“second phase”, respectively, of PUF and TRNG development in Section 5. In more detail,
TRNGs in [3,49,57] extended flash TRNGs to be applicable to other forms of non-volatile
memory, to high-performance flash modules, and mix multiple flash programming styles to
increase throughput. Flash PUFs in [45,46,54] also provide higher throughput, PUF tunabil-
ity, and great aging resistance by combining existing programming styles to extract process
variations. Further characterizing process variations sources and combining multiple pro-
gramming styles can significantly enhance PUF and TRNG constructions. Achieving the
correct “mix” of these modifications requires a deeper investigation and holds promise in
future research applications.

A research project could be easily done investigating different programming combina-
tions to optimize PUF accuracy, resiliency, or throughput. For example, aging is still a huge
problem for flash-based PUFs since repetitive P/E cycles degrade the quality of flash cells
over time. Creating adaptive aging constructions by observing programming latency or
other process variations could help extend aging-resistant flash PUFs beyond the program
disturb based construction in [45]. A deeper characterization of how aging affects these
process variations is required to develop more aging-resistant PUFs. This could extend
aging resistance outside of just program disturb-based PUFs. Furthermore, when looking
at Table 2, voltage variation is not considered for all of the PUF constructions. This may
make these PUFs vulnerable to voltage-based attacks, and this provides researchers an op-
portunity to investigate the effects of varying voltage on these process variations. This can
provide more voltage-tampering-resistant PUFs that have enhanced security and greater re-
sistance to sudden voltage changes in a given deployment environment. Another research
avenue could also be just experimenting different types of flash-based PUFs with various
combinations of process variations. For example, [11] remarked how read disturb-based
PUFs were infeasible to practically use because of long signature generation times. How-
ever, what if programming interrupt or partial programming were used to prime flash cells
into unsteady or unstable states? This can significantly increase PUF throughput while also
leveraging the high accuracy from a read disturb-based PUF as shown in [11].

6.2. Leveraging 3D Flash Memories for New Hardware Security Applications

Three-dimensional NAND flash technology is a new storage solution offering even
higher memory density than 2D planar NAND flash. Since 3D flash technology is very new,
with the first V-NAND technology created in 2012 and first being shipped into an enterprise
in 2016, there has been little work even in the academic setting for applying hardware secu-
rity primitives to 3D flash devices. However, 3D flash memories are prime candidates for
hardware security due to new exploitable process variations from the geometric properties
of 3D memories. When discussing possible 3D flash security primitives, this discussion will
focus on CT (charge trap) 3D flash rather than on FG (floating gate) 3D flash. T3D FG flash
does not provide fundamental advantages to 2D flash in cell programming performance.
It does increase storage density; however, CT 3D flash provides additional benefits due



Cryptography 2021, 5, 7 24 of 29

to the cylindrical shape of the CT cells. For this reason, possible CT 3D flash security
primitives will be the assumed 3D flash for hardware security primitive applications.

Another concern is that 3D CT devices include the reliability issues in planar flash
technologies such as various disturbs, RTN, and aging problems. However, the vertical
channel in CT flash causes vertical challenge loss through the top and bottom oxides and
lateral charge migrations towards spacers. This extra unreliability causes irregular electric
field distributions in the bottom and top oxides and causes enhanced charge loss in 3D
memories that is much worse compared to 2D architectures.

Due to the difficulty of separating the charge-trap layer between each layer, each
cell’s active charge area can leak towards cells on the same string. The charge loss causes
band bending in the top oxide (TBO) and in the bottom oxide (BTO). In the lateral charge
migration, the charge can leak through the lateral spacers, which can be accelerated by
high temperatures. Furthermore, these lateral spaces are very difficult to position because
of the difficulty in cutting the cylindrical geometries in the CT cells. This causes severe
charge migrations that have promise for sources of uniqueness or entropy in flash security
primitives. To further highlight this, [67] used a Monte Carlo simulation of a 3D NAND
flash module to demonstrate the variations in the current string of 3D flash due to process
variations in the geometry of CT flash memory cells. The simulation was able to generate
excellent uniformity, diffuseness, and uniqueness for a simulated PUF structure based on
the variation of the string currents in 3D CT flash. Furthermore, due to the high density of
the flash, the amount of challenge and response pairs (CRPs) was sufficiently large to resist
machine learning simulation-based attacks.

Due to the immense CRP space and the severe charge leakage in 3D structures vs. 2D
structures, 3D flash memory is an extremely promising candidate for hardware security
primitives. This is another active area of research that is only just starting because of the
novelty of 3D flash. However, it offers great promise for future research in leveraging the
severe charge loss present in 3D flash for a fruitful security function.

6.3. Exploring New Process Variation for Flash Memories

As flash memory cells scale down in size and bit density increases, unique oppor-
tunities arrive for exploiting new process variations in flash chips due to an increased
sensitivity of flash cells. These new process variations are not new in the strict sense of the
word. They have always existed. However, because the scaling down process of flash cells
makes the cells more sensitive, these process variations now have a much larger effect on
bit error rates, which are observable through a programming interface. An example of this
can be seen in TLC flash memory [68]. TLC flash memory has eight possible states storing
three bits per state. Due to the increased sensitivity of TLC flash memory, a well-defined
programming sequence needs to be used to avoid cell-to-cell interference. This is known as
foggy-fine programming. Foggy-fine programming initially uses very large programming
steps to increase its voltage level on its LSB bit. Then, the next two bits are programmed to
intermediate temporary values [68]. Finally, fine partial programming steps are applied
to program the TLC cells to the correct narrow voltage windows. This programming
process has immense potential in extracting process features in TLC flash because of the
multiple programming stages [68]. A well-placed interrupt could be used to extract process
variations for the highly sensitive TLC cells.

Furthermore, this increased sensitivity in TLC and QLC flash also leads to other
unique process variations that occur in exploitable trends. An example of this is known as
“symbol error rate.” In higher density flash memories, the bit error rate increases over time,
and this is expected due to increased P/E cycle aging. However, these high-density flash
chips also have fluctuating bit error rates throughout the flash chip lifetime [69]. In TLC
flash, the bit error rate increases at different rates depending on which bit, LSB, CSB (the
middle bit), or MSB, is programmed. Furthermore, 96.17% of all bit errors were due to
only one bit flip per cell [69]. Very few cells ever had two or three bit errors. Furthermore,
errors in flash blocks also tend to arise from a small subsection of cells within the block.



Cryptography 2021, 5, 7 25 of 29

This localizes and concentrates bit errors into a single locality. These trends offer great
opportunities for exploitation in flash security primitives.

Although many of these new variations have been brought up in the context of TLC
and QLC flash chips, similar variations can be discovered and exploited in MLC chips,
as well. This is due to the aggressive device downsizing that has shrunken floating gate
transistors’ sizes down exponentially. Despite this being traditionally associated with
negative process variations, this allows for great sources of entropy that are observable
through the flash digital interface for hardware security primitives.

6.4. Discovering the Vulnerabilities of Existing Flash Memory-Based Security Primitives

Many of the existing flash-based PUFs and TRNGs have very little resistance regard-
ing possible attacks or vulnerabilities in their design. However, we wish to enumerate
and explain security vulnerabilities in flash chips that could be used to damage the in-
tegrity of flash security primitives. The first concern is a secure data deletion. When the
erase function is completed, flash chips often experience data remanence. This can lead
to the recovery of already erased data. For example, attackers in [70,71] were able to
locate programmed/erased blocks vs. non-programmed blocks due to differences in the
threshold voltages of the cells after they were erased. The threshold voltages were easily
differentiated between programmed/erased because of a 0.5-volt difference in threshold
voltages. This data recovery can make flash PUFs susceptible to modeling attacks and flash
TRNGs could have their random numbers determined. To prevent this attack, secure flash
cell overwriting is necessary to prevent data remanence effects.

Another attack vector for flash memory is based on the two step-programming se-
quences of MLC flash. In an effort to reduce the cell-to-cell programming interference in
flash memory, designers employ a unique two-step programming sequence that separates
the programming of the LSB and MSB of MLC flash cells (as MLC flash memory holds
two bits per cell) [68]. This is done to help reduce the threshold voltage swing induced
by writing both at the same time since this swing induces severe cell-to-cell interference.
However, this programming sequence can be manipulated for fault injection. When the
LSB is programmed for a particular page, the MSB will be programmed next. However,
while this program is happening, researchers were able to maliciously program neighbor-
ing pages to induce severe program disturbs that corrupted the MSB values of the victim
page [68]. These errors went undetected and caused severe raw bit errors in these cells.

Finally, advanced optical attacks were also demonstrated to zero out confidential
information from secure flash memory modules. This was done through novel selective
bumping attacks [72]. These attacks allow for bypassing traditional verification of flash
memory blocks. This was done by “bumping” flash cells to a specific value, which was
able to expedite brute force searching attacks on flash memory cells and enhanced reverse
engineering efforts of the flash memory units. Furthermore, memory control logic was
able to be identified in flash chips through OBIC imaging, and this control logic was
modified through laser attacks [72]. This could possibly leak PUF information and divulge
obfuscation techniques to attackers, compromising PUF and TRNG constructions.

These attack methods against flash memory units could also be adopted to attack
flash security primitives; therefore, it is of imperative importance for researchers to tackle
existing vulnerabilities and discover new weaknesses in these security primitives or the
flash chips themselves. The literature is also very undeveloped in this area, allowing for
great research opportunities into attacks on flash security primitives.

7. Conclusions

As shown by this survey through a detailed presentation and discussion of the evo-
lution of flash memory-based PUFs/TRNGs, flash memory has the potential to be one of
the main hardware security primitive modules. However, there are many challenges that
remain before practical flash memory-based security solutions can be used. PUF/TRNG
constructions themselves have many challenging barriers to widespread adoption, such as



Cryptography 2021, 5, 7 26 of 29

aging dependence, lower throughput, and environmental dependencies, especially voltage
variation. Furthermore, attacks to these existing constructions need a deeper investigation
to validate the efficacy of flash security primitives. Despite these challenges, flash mem-
ory is a great platform for security primitives as it is one of the most common forms of
non-volatile memory used in industry. Moreover, it is constantly being innovated through
various advanced architectures, such as 3D flash, QLC, and TLC memory modules, to adapt
to modern data storage demands. These various new platforms also show even greater
promise in integrating novel security primitives, as highlighted in Section 6’s discussion of
developing research areas. In these changing times for hardware security, quality research
is key to affirm non-volatile memories, particularly flash memory, as a viable alternative to
the most famous approaches. Hopefully, following the challenges discussed in this survey,
research can address the open issues, taking advantage of current opportunities, and propose
increasingly competitive and applicable flash memory-based hardware security primitives.

Author Contributions: Conceptualization, H.G. and F.T.; methodology, H.G. and F.T.; software, H.G.
and J.E.; validation, H.G., J.E., and F.T.; formal analysis, H.G.; investigation, F.T., N.K., and W.Y.;
resources, J.E., W.Y., and N.K.; data curation, H.G. and S.G.; writing—original draft preparation,
H.G.; writing—review and editing, S.G. and F.T.; visualization, H.G., J.E., and S.G.; supervision, F.T.,
N.K., and W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: This study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anagnostopoulos, N.A.; Katzenbeisser, S.; Chandy, J.; Tehranipoor, F. An overview of DRAM-based security primitives.

Cryptography 2018, 2, 7. [CrossRef]
2. Tehranipoor, F.; Karimian, N.; Xiao, K.; Chandy, J. DRAM based intrinsic physical unclonable functions for system level security.

In Proceedings of the 25th edition on Great Lakes Symposium on VLSI, Pittsburgh, PA, USA, 20–22 May 2015; pp. 15–20.
3. Ray, B.; Milenković, A. True random number generation using read noise of flash memory cells. IEEE Trans. Electron Devices 2018,

65, 963–969. [CrossRef]
4. Karimian, N.; Tehranipoor, F. How to Generate Robust Keys from Noisy DRAMs? In Proceedings of the 2019 on Great Lakes

Symposium on VLSI, Tysons Corner, VA, USA, 9–11 May 2019; pp. 465–469.
5. Gassend, B.; Clarke, D.; Van Dijk, M.; Devadas, S. Silicon physical random functions. In Proceedings of the 9th ACM Conference

on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 148–160.
6. Sushma, R.; Murty, N.S. Feedback Oriented XORed Flip-Flop Based Arbiter PUF. In Proceedings of the 2018 International

Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Msyuru, India,
14–15 December 2018; pp. 1444–1448. [CrossRef]

7. Cui, Y.; Wang, C.; Liu, W.; Yu, Y.; O’Neill, M.; Lombardi, F. Low-cost configurable ring oscillator PUF with improved uniqueness.
In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May
2016; pp. 558–561. [CrossRef]

8. Anagnostopoulos, N.A.; Arul, T.; Fan, Y.; Hatzfeld, C.; Lotichius, J.; Sharma, R.; Fernandes, F.; Tehranipoor, F.; Katzenbeisser, S.
Securing IoT Devices Using Robust DRAM PUFs. In Proceedings of the 2018 Global Information Infrastructure and Networking
Symposium (GIIS), Thessaloniki, Greece, 23–25 October 2018; pp. 1–5. [CrossRef]

9. Urien, P. Innovative ATMEGA8 Microcontroler Static Authentication Based on SRAM PUF. In Proceedings of the 2020 IEEE
17th Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–2.
[CrossRef]

10. Rührmair, U.; Holcomb, D.E. PUFs at a glance. In Proceedings of the 2014 Design, Automation Test in Europe Conference
Exhibition (DATE), Dresden, Germany, 24–28 March 2014; pp. 1–6. [CrossRef]

11. Prabhu, P.; Akel, A.; Grupp, L.M.; Wing-Kei, S.Y.; Suh, G.E.; Kan, E.; Swanson, S. Extracting device fingerprints from flash
memory by exploiting physical variations. In Proceedings of the International Conference on Trust and Trustworthy Computing,
Pittsburgh, PA, USA, 22–24 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 188–201.

12. Tehranipoor, F.; Karimian, N.; Yan, W.; Chandy, J.A. DRAM-based intrinsic physically unclonable functions for system-level
security and authentication. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 25, 1085–1097. [CrossRef]

13. Eckert, C.; Tehranipoor, F.; Chandy, J.A. DRNG: DRAM-based random number generation using its startup value behavior.
In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA,
6–9 August 2017; pp. 1260–1263.

http://doi.org/10.3390/cryptography2020007
http://dx.doi.org/10.1109/TED.2018.2792436
http://dx.doi.org/10.1109/ICEECCOT43722.2018.9001605
http://dx.doi.org/10.1109/ISCAS.2016.7527301
http://dx.doi.org/10.1109/GIIS.2018.8635789
http://dx.doi.org/10.1109/CCNC46108.2020.9045502
http://dx.doi.org/10.7873/DATE.2014.360
http://dx.doi.org/10.1109/TVLSI.2016.2606658


Cryptography 2021, 5, 7 27 of 29

14. Brederlow, R.; Prakash, R.; Paulus, C.; Thewes, R. A low-power true random number generator using random telegraph noise of
single oxide-traps. In Proceedings of the 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers,
San Francisco, CA, USA, 6–9 February 2006; pp. 1666–1675.

15. Tehranipoor, F.; Wortman, P.; Karimian, N.; Yan, W.; Chandy, J.A. DVFT: A Lightweight Solution for Power-Supply Noise-Based
TRNG Using Dynamic Voltage Feedback Tuning System. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1084–1097.
[CrossRef]

16. Tehranipoor, F.; Yan, W.; Chandy, J.A. Robust hardware true random number generators using DRAM remanence effects.
In Proceedings of the 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA,
3–5 May 2016; pp. 79–84.

17. Guin, U.; Huang, K.; DiMase, D.; Carulli, J.M.; Tehranipoor, M.; Makris, Y. Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain. Proc. IEEE 2014, 102, 1207–1228. [CrossRef]

18. Pecht, M.; Tiku, S. Bogus: Electronic manufacturing and consumers confront a rising tide of counterfeit electronics. IEEE Spectr.
2006, 43, 37–46. [CrossRef]

19. Nathalie, K.-N.; Stephanie, P. Qualification and Testing Process to Implement Anti-Counterfeiting Technologies into IC Packages.
In Proceedings of the 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 18–22 March
2013; pp. 1131–1136. ISBN 978-1-4673-5071-6. [CrossRef]

20. Guin, U.; Wang, W.; Harper, C.; Singh, A.D. Detecting recycled socs by exploiting aging induced biases in memory cells.
In Proceedings of the 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA,
5–10 May 2019.

21. Schaller, A.; Xiong, W.; Anagnostopoulos, N.A.; Saleem, M.U.; Gabmeyer, S.; Škorić, B.; Katzenbeisser, S.; Szefer, J. Decay-Based
DRAM PUFs in Commodity Devices. IEEE Trans. Dependable Secur. Comput. 2018, 16, 462–475. [CrossRef]

22. Holcomb, D.E.; Burleson, W.P.; Fu, K. Power-up SRAM state as an identifying fingerprint and source of true random numbers.
IEEE Trans. Comput. 2008, 58, 1198–1210. [CrossRef]

23. Wang, W.; Guin, U.; Singh, A. Aging-Resilient SRAM-based True Random Number Generator for Lightweight Devices.
J. Electron. Test. 2020, 36, 301–311. [CrossRef]

24. Cai, Y.; Luo, Y.; Ghose, S.; Mutlu, O. Read disturb errors in MLC NAND flash memory: Characterization, mitigation, and recovery.
In Proceedings of the 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Rio de Janeiro,
Brazil, 22–25 June 2015; pp. 438–449.

25. Che, W.; Plusquellic, J.; Bhunia, S. A non-volatile memory based physically unclonable function without helper data. In Proceed-
ings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2–6 November
2014; pp. 148–153.

26. De Castro, C.G.; de Medeiros Câmara, S.; da Costa Carmo, L.F.R.; Boccardo, D.R. EVINCED: Integrity Verification Scheme for
Embedded Systems Based on Time and Clock Cycles. In Proceedings of the 2017 IEEE 15th Intl Conf on Dependable, Autonomic
and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Orlando, FL, USA,
6–10 November 2017; pp. 788–795.

27. Bindal, A. Fundamentals of Computer Architecture and Design; Springer: Berlin/Heidelberg, Germany, 2017.
28. Oh, J.W. Reverse Engineering Flash Memory for Fun and Benefit; Blackhat US: Las Vegas, NV, USA, 2014.
29. Micheloni, R.3D Flash Memories; Springer: Dordrecht, The Netherlands, 2016.
30. Chang, K.P.; Lue, H.T.; Chen, C.P.; Chen, C.F.; Chen, Y.R.; Hsiao, Y.H.; Hsieh, C.C.; Shih, Y.H.; Yang, T.; Chen, K.C.; et al.

Memory architecture of 3d vertical gate (3dvg) nand flash using plural island-gate ssl decoding method and study of it’s program
inhibit characteristics. In Proceedings of the 2012 4th IEEE International Memory Workshop, Milan, Italy, 20–23 May 2012;
pp. 1–4.

31. Shirota, R.; Nakayama, R.; Kirisawa, R.; Momodomi, M.; Sakui, K.; Itoh, Y.; Aritome, S.; Endoh, T.; Hatori, F.; Masuoka, F.
A 2.3 mu m/sup 2/memory cell structure for 16 Mb NAND EEPROMs. In Proceedings of the International Technical Digest on
Electron Devices, San Francisco, CA, USA, 9–12 December 1990; pp. 103–106.

32. Campardo, G.; Scotti, M.; Scommegna, S.; Pollara, S.; Silvagni, A. An overview of flash architectural developments. Proc. IEEE
2003, 91, 523–536. [CrossRef]

33. Jung, S.M.; Jang, J.; Cho, W.; Cho, H.; Jeong, J.; Chang, Y.; Kim, J.; Rah, Y.; Son, Y.; Park, J.; et al. Three dimensionally stacked
NAND flash memory technology using stacking single crystal Si layers on ILD and TANOS structure for beyond 30 nm node.
In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4.

34. Shijun, L.; Xuecheng, Z. Analysis of 3D NAND technologies and comparison between charge-trap-based and floating-gate-based
flash devices. J. China Univ. Posts Telecommun. 2017, 24, 75–96. [CrossRef]

35. Micheloni, R.; Crippa, L.; Zambelli, C.; Olivo, P. Architectural and integration options for 3d NAND flash memories. Computers
2017, 6, 27. [CrossRef]

36. Chowdhur, M.A.H.; Kimy, K.-H. A survey of flash memory design and implementation of database in flash memory. In Proceed-
ings of the 2008 3rd International Conference on Intelligent System and Knowledge Engineering, Xiamen, China, 17–19 November
2008; Volume 1, pp. 1256–1259. [CrossRef]

http://dx.doi.org/10.1109/TVLSI.2018.2804258
http://dx.doi.org/10.1109/JPROC.2014.2332291
http://dx.doi.org/10.1109/MSPEC.2006.1628506
http://dx.doi.org/10.7873/DATE.2013.237
http://dx.doi.org/10.1109/TDSC.2018.2822298
http://dx.doi.org/10.1109/TC.2008.212
http://dx.doi.org/10.1007/s10836-020-05881-6
http://dx.doi.org/10.1109/JPROC.2003.811705
http://dx.doi.org/10.1016/S1005-8885(17)60214-0
http://dx.doi.org/10.3390/computers6030027
http://dx.doi.org/10.1109/ISKE.2008.4731123


Cryptography 2021, 5, 7 28 of 29

37. Fukuzumi, Y.; Katsumata, R.; Kito, M.; Kido, M.; Sato, M.; Tanaka, H.; Nagata, Y.; Matsuoka, Y.; Iwata, Y.; Aochi, H.; et al. Optimal
integration and characteristics of vertical array devices for ultra-high density, bit-cost scalable flash memory. In Proceedings of
the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 449–452.

38. Tanaka, H.; Kido, M.; Yahashi, K.; Oomura, M.; Katsumata, R.; Kito, M.; Fukuzumi, Y.; Sato, M.; Nagata, Y.; Matsuoka, Y.; et al.
Bit cost scalable technology with punch and plug process for ultra high density flash memory. In Proceedings of the 2007 IEEE
Symposium on VLSI Technology, Kyoto, Japan, 12–14 June 2007; pp. 14–15.

39. Ishiduki, M.; Fukuzumi, Y.; Katsumata, R.; Kito, M.; Kido, M.; Tanaka, H.; Komori, Y.; Nagata, Y.; Fujiwara, T.; Maeda, T.; et al.
Optimal device structure for pipe-shaped BiCS flash memory for ultra high density storage device with excellent performance
and reliability. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9
December 2009; pp. 1–4.

40. Jeong, W.; Im, J.W.; Kim, D.H.; Nam, S.W.; Shim, D.K.; Choi, M.H.; Yoon, H.J.; Kim, D.H.; Kim, Y.S.; Park, H.W.; et al. A 128 Gb
3b/cell V-NAND flash memory with 1 Gb/s I/O rate. IEEE J. Solid-State Circuits 2015, 51, 204–212.

41. Kang, D.; Jeong, W.; Kim, C.; Kim, D.H.; Cho, Y.S.; Kang, K.T.; Ryu, J.; Kang, K.M.; Lee, S.; Kim, W.; et al. 256 Gb 3 b/cell V-NAND
flash memory with 48 stacked WL layers. IEEE J. Solid-State Circuits 2016, 52, 210–217. [CrossRef]

42. Aochi, H. BiCS flash as a future 3D non-volatile memory technology for ultra high density storage devices. In Proceedings of the
2009 IEEE International Memory Workshop, Monterey, CA, USA, 10–14 May 2009; pp. 1–2.

43. Nishi, Y.; Magyari-Kope, B. Advances in Non-Volatile Memory and Storage Technology; Woodhead Publishing: Cambridge, UK, 2019.
44. Xu, S.Q.; Yu, W.k.; Suh, G.E.; Kan, E.C. Understanding sources of variations in flash memory for physical unclonable functions.

In Proceedings of the 2014 IEEE 6th International Memory Workshop (IMW), Taipei, Taiwan, 18–21 May 2014; pp. 1–4.
45. Sakib, S.; Milenković, A.; Rahman, M.T.; Ray, B. An Aging-Resistant NAND Flash Memory Physical Unclonable Function.

IEEE Trans. Electron Devices 2020, 67, 937–943. [CrossRef]
46. Jia, S.; Xia, L.; Wang, Z.; Lin, J.; Zhang, G.; Ji, Y. Extracting robust keys from nand flash physical unclonable functions.

In Proceedings of the International Conference on Information Security, Trondheim, Norway, 9–11 September 2015; Springer:
Cham, Switzerland, 2015; pp. 437–454.

47. Roach, A.H.; Gadlage, M.J.; Duncan, A.R.; Ingalls, J.D.; Kay, M.J. Interrupted PROGRAM and ERASE operations for characterizing
radiation effects in commercial NAND flash memories. IEEE Trans. Nucl. Sci. 2015, 62, 2390–2397. [CrossRef]

48. Heidecker, J. Flash Memory Reliability: Read, Program, and Erase Latency versus Endurance Cycling; Technical Report; Jet Propulsion
Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2010.

49. Chakraborty, S.; Garg, A.; Suri, M. True Random Number Generation From Commodity NVM Chips. IEEE Trans. Electron Devices
2020, 67, 888–894. [CrossRef]

50. Fayrushin, A.; Seol, K.; Na, J.; Hur, S.; Choi, J.; Kim, K. The new program/erase cycling degradation mechanism of NAND
flash memory devices. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA,
7–9 December 2009; pp. 1–4.

51. Joe, S.M.; Yi, J.H.; Park, S.K.; Shin, H.; Park, B.G.; Park, Y.J.; Lee, J.H. Threshold voltage fluctuation by random telegraph noise in
floating gate NAND flash memory string. IEEE Trans. Electron Devices 2010, 58, 67–73. [CrossRef]

52. Puglisi, F.M.; Padovani, A.; Larcher, L.; Pavan, P. Random telegraph noise: Measurement, data analysis, and interpretation.
In Proceedings of the 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA),
Chengdu, China, 4–7 July 2017; pp. 1–9.

53. Wang, Y.; Yu, W.K.; Wu, S.; Malysa, G.; Suh, G.E.; Kan, E.C. Flash memory for ubiquitous hardware security functions:
True random number generation and device fingerprints. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,
San Francisco, CA, USA, 20–23 May 2012; pp. 33–47.

54. Kim, M.S.; Moon, D.I.; Yoo, S.K.; Lee, S.H.; Choi, Y.K. Investigation of physically unclonable functions using flash memory for
integrated circuit authentication. IEEE Trans. Nanotechnol. 2015, 14, 384–389. [CrossRef]

55. Saito, T.; Nagase, H.; Izuna, M.; Shimoi, T.; Kanda, A.; Ito, T.; Kono, T. High-Temperature Stable Physical Unclonable Functions
with Error-Free Readout Scheme Based on 28nm SG-MONOS Flash Memory for Security Applications. IEEE Int. Mem. Workshop
2017, 127–130. [CrossRef]

56. Wu, M.; Yang, T.; Chen, L.; Lin, C.; Hu, H.; Su, F.; Wang, C.; Huang, J.P.; Chen, H.; Lu, C.C.; et al. A PUF scheme using competing
oxide rupture with bit error rate approaching zero. In Proceedings of the 2018 IEEE International Solid—State Circuits Conference
(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 130–132. [CrossRef]

57. Clark, L.T.; Adams, J.; Holbert, K.E. Reliable techniques for integrated circuit identification and true random number generation
using 1.5-transistor flash memory. Integration 2019, 65, 263–272. [CrossRef]

58. Poudel, P.; Ray, B.; Milenkovic, A. Microcontroller TRNGs Using Perturbed States of NOR Flash Memory Cells. IEEE Trans.
Comput. 2019, 68, 307–313.

59. Mahmoodi, M.; Nili, H.; Larimian, S.; Guo, X.; Strukov, D. ChipSecure: A Reconfigurable Analog eFlash-Based PUF with Machine
Learning Attack Resiliency in 55nm CMOS. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC),
Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6.

60. Larimian, S.; Mahmoodi, M.R.; Strukov, B.D. Lightweight Integrated Design of PUF and TRNG Security Primitives Based on
eFlash Memory in 55-nm CMOS. IEEE Trans. Electron Devices 2020, 67, 1586–1592. [CrossRef]

http://dx.doi.org/10.1109/JSSC.2016.2604297
http://dx.doi.org/10.1109/TED.2020.2968272
http://dx.doi.org/10.1109/TNS.2015.2490019
http://dx.doi.org/10.1109/TED.2019.2963203
http://dx.doi.org/10.1109/TED.2010.2088126
http://dx.doi.org/10.1109/TNANO.2015.2397956
http://dx.doi.org/10.1109/IMW.2017.7939086
http://dx.doi.org/10.1109/ISSCC.2018.8310218
http://dx.doi.org/10.1016/j.vlsi.2017.10.001
http://dx.doi.org/10.1109/TED.2020.2976632


Cryptography 2021, 5, 7 29 of 29

61. Zimu Guo, X. Xu, M.M.T.; Forte, D. FFD: A framework for fake flash detection. In Proceedings of the 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017; Volume 54, pp. 1–6.

62. Kumari, P.; Talukder, B.M.S.B.; Sakib, S.; Ray, B.; Rahman, M.T. Independent detection of recycled flash memory: Challenges and
Solutions. In Proceedings of the 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
Washington, DC, USA, 30 April–4 May 2018; pp. 89–95.

63. Chattopadhyay, S.; Kumari, P.; Ray, B.; Chakraborty, R.S. Machine Learning Assisted Accurate Estimation of Usage Duration
and Manufacturer for Recycled and Counterfeit Flash Memory Detection. In Proceedings of the 2019 IEEE 28th Asian Test
Symposium (ATS), Kolkata, India, 10–13 December 2019; pp. 49–495.

64. Liu, M.; Kim, C.H. A powerless and non-volatile counterfeit IC detection sensor in a standard logic process based on an exposed
floating-gate array. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; Volume 68,
pp. T102–T103.

65. He, K.; Huang, X.; Tan, S.X.-D. EM-based on-chip aging sensor for detection and prevention of counterfeit and recycled
ICs. In Proceedings of the 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA,
2–6 November 2015; pp. 146–151.

66. Ye, Y.; Kim, T.; Chen, H.; Wang, H.; Tlelo-Cuautle, E.; Tan, S.X.-D. Comprehensive detection of counterfeit ICs via on-chip sensor
and post-fabrication authentication policy. In Proceedings of the 2017 14th International Conference on Synthesis, Modeling,
Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Giardini Naxos, Italy, 12–15 June 2017; pp. 1–4.

67. Sahay, S.; Klachko, M.; Strukov, D. Hardware Security Primitive Exploiting Intrinsic Variability in Analog Behavior of 3-D NAND
Flash Memory Array. IEEE Trans. Electron Devices 2019, 66, 2158–2164. [CrossRef]

68. Cai, Y.; Ghose, S.; Luo, Y.; Mai, K.; Mutlu, O.; Haratsch, E.F. Vulnerabilities in MLC NAND flash memory programming:
Experimental analysis, exploits, and mitigation techniques. In Proceedings of the 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017; pp. 49–60.

69. Wanner, L.; Lai, L.; Rahimi, A.; Gottscho, M.; Mercati, P.; Huang, C.H.; Sala, F.; Agarwal, Y.; Dolecek, L.; Dutt, N.; et al. NSF
expedition on variability-aware software: Recent results and contributions. it-Inf. Technol. 2015, 57, 181–198. [CrossRef]

70. Xin, R.; Ye, M.; Wang, J.; Hu, K.; Zhao, Y. Data deletion method for security improvement of Flash memories. IEICE Electron. Express
2018, 15, 20180152. [CrossRef]

71. Wang, J.; Zhao, Y.; Xin, R.; Ye, M. A study of residual characteristics in floating gate transistors. Sci. China Inf. Sci. 2018,
61, 069402:1–069402:3. [CrossRef]

72. Skorobogatov, S. Flash memory ‘bumping’attacks. In Proceedings of the International Workshop on Cryptographic Hardware
and Embedded Systems, Santa Barbara, CA, USA, 17–20 August 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 158–172.

http://dx.doi.org/10.1109/TED.2019.2903786
http://dx.doi.org/10.1515/itit-2014-1085
http://dx.doi.org/10.1587/elex.15.20180152
http://dx.doi.org/10.1007/s11432-017-9145-2

	Flash-based security primitives: Evolution, challenges and future directions
	Recommended Citation
	Authors

	Introduction and Background
	Our Contributions
	Physical Unclonable Functions
	True Random Number Generators
	IC Counterfeit Detection
	Memories
	Paper Organization

	Flash Memory Architecture
	Types of Flash Memory
	NAND Flash Memory
	2D NAND Flash
	3D NAND Flash

	NOR Flash Memory

	Sources of Process Variation in Flash Memories
	Read Disturb
	Program Disturb
	Program/Erase Interrupt
	Program/Erase Latency
	Random Telegraph Noise (RTN)

	Comprehensive Literature Review
	Flash Memory-Based PUFs
	First Phase of Development
	Second Phase of Development

	Flash Memory-Based TRNG
	Flash IC Counterfeit Detection

	Potential Future Research Directions
	Enhancing Existing 2D Flash Memory Features
	Leveraging 3D Flash Memories for New Hardware Security Applications
	Exploring New Process Variation for Flash Memories
	Discovering the Vulnerabilities of Existing Flash Memory-Based Security Primitives

	Conclusions
	References

