215 research outputs found

    Consistent dissection of the protein interaction network by combining global and local metrics

    Get PDF
    A new network decomposition method is proposed that uses both a global metric and a local metric to identify protein interaction modules in the protein interaction network

    Comparative mapping of sequence-based and structure-based protein domains

    Get PDF
    BACKGROUND: Protein domains have long been an ill-defined concept in biology. They are generally described as autonomous folding units with evolutionary and functional independence. Both structure-based and sequence-based domain definitions have been widely used. But whether these types of models alone can capture all essential features of domains is still an open question. METHODS: Here we provide insight on domain definitions through comparative mapping of two domain classification databases, one sequence-based (Pfam) and the other structure-based (SCOP). A mapping score is defined to indicate the significance of the mapping, and the properties of the mapping matrices are studied. RESULTS: The mapping results show a general agreement between the two databases, as well as many interesting areas of disagreement. In the cases of disagreement, the functional and evolutionary characteristics of the domains are examined to determine which domain definition is biologically more informative

    MAO: a Multiple Alignment Ontology for nucleic acid and protein sequences

    Get PDF
    The application of high-throughput techniques such as genomics, proteomics or transcriptomics means that vast amounts of heterogeneous data are now available in the public databases. Bioinformatics is responding to the challenge with new integrated management systems for data collection, validation and analysis. Multiple alignments of genomic and protein sequences provide an ideal environment for the integration of this mass of information. In the context of the sequence family, structural and functional data can be evaluated and propagated from known to unknown sequences. However, effective integration is being hindered by syntactic and semantic differences between the different data resources and the alignment techniques employed. One solution to this problem is the development of an ontology that systematically defines the terms used in a specific domain. Ontologies are used to share data from different resources, to automatically analyse information and to represent domain knowledge for non-experts. Here, we present MAO, a new ontology for multiple alignments of nucleic and protein sequences. MAO is designed to improve interoperation and data sharing between different alignment protocols for the construction of a high quality, reliable multiple alignment in order to facilitate knowledge extraction and the presentation of the most pertinent information to the biologist

    Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells

    Get PDF
    BACKGROUND: Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. METHODS: The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm(2 )for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. RESULTS: Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. CONCLUSION: We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies can lead to new strategies for cancer detection and therapy

    Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein

    Get PDF
    Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3′ oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3′ UUUOH trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3′ UUUOH trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3′ oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation

    UV-Vis spectroscopic characterization of nanomaterials in aqueous media

    Get PDF
    The physicochemical characterization of nanomaterials (NMs) is often an analytical challenge, due to their small size (at least one dimension in the nanoscale, i.e. 1–100 nm), dynamic nature, and diverse properties. At the same time, reliable and repeatable characterization is paramount to ensure safety and quality in the manufacturing of NM-bearing products. There are several methods available to monitor and achieve reliable measurement of nanoscale-related properties, one example of which is Ultraviolet-Visible Spectroscopy (UV-Vis). This is a well-established, simple, and inexpensive technique that provides non-invasive and fast real-time screening evaluation of NM size, concentration, and aggregation state. Such features make UV-Vis an ideal methodology to assess the proficiency testing schemes (PTS) of a validated standard operating procedure (SOP) intended to evaluate the performance and reproducibility of a characterization method. In this paper, the PTS of six partner laboratories from the H2020 project ACEnano were assessed through an interlaboratory comparison (ILC). Standard gold (Au) colloid suspensions of different sizes (ranging 5–100 nm) were characterized by UV-Vis at the different institutions to develop an implementable and robust protocol for NM size characterization
    corecore