337 research outputs found

    Loss of Emerin Alters Myogenic Signaling and miRNA Expression in Mouse Myogenic Progenitors

    Get PDF
    Emerin is an integral membrane protein of the inner nuclear membrane. Mutations in emerin cause X-linked Emery-Dreifuss muscular dystrophy (EDMD), a disease characterized by skeletal muscle wasting and dilated cardiomyopathy. Current evidence suggests the muscle wasting phenotype of EDMD is caused by defective myogenic progenitor cell differentiation and impaired muscle regeneration. We obtained genome-wide expression data for both mRNA and micro-RNA (miRNA) in wildtype and emerin-null mouse myogenic progenitor cells. We report here that emerin-null myogenic progenitors exhibit differential expression of multiple signaling pathway components required for normal muscle development and regeneration. Components of the Wnt, IGF-1, TGF-β, and Notch signaling pathways are misexpressed in emerin-null myogenic progenitors at both the mRNA and protein levels. We also report significant perturbations in the expression and activation of p38/Mapk14 in emerin-null myogenic progenitors, showing that perturbed expression of Wnt, IGF-1, TGF-β, and Notch signaling components disrupts normal downstream myogenic signaling in these cells. Collectively, these data support the hypothesis that emerin is essential for proper myogenic signaling in myogenic progenitors, which is necessary for myogenic differentiation and muscle regeneration

    Nxt1 Is Necessary for the Terminal Step of Crm1-Mediated Nuclear Export

    Get PDF
    Soluble factors are required to mediate nuclear export of protein and RNA through the nuclear pore complex (NPC). These soluble factors include receptors that bind directly to the transport substrate and regulators that determine the assembly state of receptor–substrate complexes. We recently reported the identification of NXT1, an NTF2-related export factor that stimulates nuclear protein export in permeabilized cells and undergoes nucleocytoplasmic shuttling in vivo (Black, B.E., L. Lévesque, J.M. Holaska, T.C. Wood, and B.M. Paschal. 1999. Mol. Cell. Biol. 19:8616–8624). Here, we describe the molecular characterization of NXT1 in the context of the Crm1-dependent export pathway. We find that NXT1 binds directly to Crm1, and that the interaction is sensitive to the presence of Ran-GTP. Moreover, mutations in NXT1 that reduce binding to Crm1 inhibit the activity of NXT1 in nuclear export assays. We show that recombinant Crm1 and Ran are sufficient to reconstitute nuclear translocation of a Rev reporter protein from the nucleolus to an antibody accessible site on the cytoplasmic side of the NPC. Further progress on the export pathway, including the terminal step of Crm1 and Rev reporter protein release, requires NXT1. We propose that NXT1 engages with the export complex in the nucleoplasm, and that it facilitates delivery of the export complex to a site on the cytoplasmic side of NPC where the receptor and substrate are released into the cytoplasm

    Role of A-type lamins in signaling, transcription, and chromatin organization

    Get PDF
    A-type lamins (lamins A and C), encoded by the LMNA gene, are major protein constituents of the mammalian nuclear lamina, a complex structure that acts as a scaffold for protein complexes that regulate nuclear structure and functions. Interest in these proteins has increased in recent years with the discovery that LMNA mutations cause a variety of human diseases termed laminopathies, including progeroid syndromes and disorders that primarily affect striated muscle, adipose, bone, and neuronal tissues. In this review, we discuss recent research supporting the concept that lamin A/C and associated nuclear envelope proteins regulate gene expression in health and disease through interplay with signal transduction pathways, transcription factors, and chromatin-associated proteins

    Emerin Caps the Pointed End of Actin Filaments: Evidence for an Actin Cortical Network at the Nuclear Inner Membrane

    Get PDF
    X-linked Emery-Dreifuss muscular dystrophy is caused by loss of emerin, a LEM-domain protein of the nuclear inner membrane. To better understand emerin function, we used affinity chromatography to purify emerin-binding proteins from nuclear extracts of HeLa cells. Complexes that included actin, αII-spectrin and additional proteins, bound specifically to emerin. Actin polymerization assays in the presence or absence of gelsolin or capping protein showed that emerin binds and stabilizes the pointed end of actin filaments, increasing the actin polymerization rate 4- to 12-fold. We propose that emerin contributes to the formation of an actin-based cortical network at the nuclear inner membrane, conceptually analogous to the actin cortical network at the plasma membrane. Thus, in addition to disrupting transcription factors that bind emerin, loss of emerin may destabilize nuclear envelope architecture by weakening a nuclear actin network
    corecore