14 research outputs found

    Finite element modelling of damage fracture and fretting fatigue

    Get PDF
    This paper summarises the research carried out to develop Finite Element (FE) modelling and predictive techniques for damage, fracture, fatigue and fretting fatigue problems. A damage model is developed based on Continuum Damage Mechanics and integrated within FE code. It is then used to predict the number of cycles to crack initiation in adhesively bonded joints. Furthermore, crack propagation algorithm is programmed within FE code using the principles of Fracture Mechanics and Paris law. The effect of mode mixity on crack propagation is taken into account using a Double Cantilever Beam (DCB) test specimen. Moreover, FE model of fretting fatigue aluminium test specimen is carried out in order to study the stress distribution and predict the crack propagation fatigue lifetime. Fretting fatigue problems involve two types of analyses; namely contact mechanics analysis and damage/fracture mechanics analysis. Both analyses are performed in FE code and the stress distribution along the contact surface between the two bodies is obtained and analysed. Furthermore, crack propagation analysis under fretting fatigue condition is presented. In most cases, the numerical results are compared to experimental ones

    Carbon capture: Whole system experimental and theoretical modeling investigation of the optimal CO<inf>2</inf> stream composition in the carbon capture and sequestration chain

    Get PDF
    Rapid increase in emissions of greenhouse gases (GHGs) has become a major concern to the global community. This is associated with the rapid growth in population and corresponding increase in energy demand. Combustion of fossil fuels accounts for the majority of CO2 emissions. Coal is used mostly for electricity generation, for instance, about 85.5% of coal (produced and imported) in the United 459Kingdom was used for electricity generation in 2011 [1]. Coal-fired power plants are therefore the largest stationary source of CO2

    Assessment of brittle fracture in CO2 transportation pipelines: A hybrid fluid-structure interation model

    Get PDF
    In order to transport dense-phase CO2 captured from power and industrial emission sources in the Carbon Capture and Storage (CCS) chain, pressurised steel pipelines are considered the most practical tool. However, concerns have been raised that low temperatures induced by the expansion of dense-phase CO2, for example following an accidental puncture or during emergency depressurization, may result in a propagating brittle fracture in the pipeline steels. The present study describes the development of a hybrid fluid-structure model for simulating dynamic brittle fracture in buried pressurised CO2 pipelines. To simulate the state of the flow in the rupturing pipeline, a compressible one-dimensional Computational Fluid Dynamics (CFD) model is applied, where the pertinent fluid properties are determined using a thermodynamic model. In terms of the fracture model, an extended Finite Element Method (XFEM) is used to model the dynamic brittle fracture behaviour of the pipeline steel. Using the coupled fluid-structure model, a study is performed to evaluate the risk of brittle fracture propagation in a (real-scale) 1.22m diameter API X70 steel pipeline, containing CO2 at 0°C and 11MPa. The simulated results are found to be in good agreement with the predictions obtained using a semi-empirical model accounting for the pipeline fracture toughness. From the results obtained it is observed that a propagating fracture is limited to a short distance. As such, for the conditions tested, there is no risk of brittle fracture propagation for API X70 pipeline steel transporting dense-phase CO2

    Numerical estimation of fretting fatigue lifetime using damage and fracture mechanics

    Full text link
    Fretting fatigue is a complex tribological phenomenon that can cause premature failure of connected components that have small relative oscillatory movement. The fraction of fretting fatigue lifetime spent in crack initiation and in crack propagation depends on many factors, e.g., contact stresses, amount of slip, frequency, environmental conditions, etc., and varies from one application to another. Therefore, both crack initiation and propagation phases are important in analysing fretting fatigue. In this investigation, a numerical approach is used to predict these two portions and estimate fretting fatigue failure lifetime under a conformal contact configuration. For this purpose, an uncoupled damage evolution law based on principles of continuum damage mechanics is developed for modelling crack initiation. The extended finite element method approach is used for calculating crack propagation lifetimes. The estimated results are validated with previously reported experimental data and compared with other available methods in the literature.The authors wish to thank the Ghent University for the financial support received by the Special Funding of Ghent University, BOF (Bijzonder Onderzoeksfonds), in the framework of project (BOF 01N02410) and gratefully acknowledge the financial support provided by the Spanish Ministry of Economics and Competitiveness through the project DPI2010-20990.Hojjati-Talemi, R.; Wahab, MA.; Giner Maravilla, E.; Sabsabi, M. (2013). Numerical estimation of fretting fatigue lifetime using damage and fracture mechanics. Tribology Letters. 52(1):11-25. https://doi.org/10.1007/s11249-013-0189-8S1125521Hills, D.A., Nowell, D.: Mechanics of Fretting Fatigue. Solid Mechanics and its Applications vol. 30. Kluwer Academic Publishers, Dordrecht (1994)Smith, K.N., Watson, P., Topper, T.H.: A stress-strain function for the fatigue of metals. J Mater. (JMSLA) 4, 767–778 (1970)Szolwinski, M.P., Farris, T.N.: Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear 221(1), 24–36 (1998)Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 11(3), 149–165 (1988)Navarro, C., Muñoz, S., Domínguez, J.: On the use of multiaxial fatigue criteria for fretting fatigue life assessment. Int. J. Fatigue 30(1), 32–44 (2008)Giner, E., Tur, M., Vercher, A., Fuenmayor, F.J.: Numerical modelling of crack-contact interaction in 2D incomplete fretting contacts using X-FEM. Tribol. Int. 42(9), 1269–1275 (2009)Giner, E., Navarro, C., Sabsabi, M., Tur, M., Domínguez, J., Fuenmayor, F.J.: Fretting fatigue life prediction using the extended finite element method. Int. J. Mech. Sci. 53(3), 217–225 (2011)McDiarmid, D.L.: A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 14(4), 429–453 (1991)Findley, W.N., Brown University, Division of Engineering, United States, Office of Ordnance R.: A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending. Division of Engineering, Brown University, Providence, RI (1958)Lee, H., Jin, O., Mall, S.: Fretting fatigue behavior of Ti–6Al–4 V with dissimilar mating materials. Int. J. Fatigue 26(4), 393–402 (2004)Murthy, H., Mseis, G., Farris, T.N.: Life estimation of Ti–6Al–4 V specimens subjected to fretting fatigue and effect of surface treatments. Tribol. Int. 42(9), 1304–1315 (2009)Crossland, B.: Effect of large hydrostatic pressures on torsional fatigue strength of an alloy steel. In: Proceedings of International Conference on Fatigue of Metals (1956)Quraishi, S.M., Khonsari, M.M., Baek, D.K.: A thermodynamic approach for predicting fretting fatigue life. Tribol. Lett. 19(3), 169–175 (2005)Aghdam, A.B., Beheshti, A., Khonsari, M.M.: On the fretting crack nucleation with provision for size effect. Tribol. Int. 47, 32–43 (2012)Zhang, T., McHugh, P.E., Leen, S.B.: Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue. Int. J. Fatigue 44, 260–272 (2012)Hojjati-Talemi, R., Wahab, M.A.: Fretting fatigue crack initiation lifetime predictor tool: using damage mechanics approach. Tribol. Int. 60, 176–186 (2013)Rooke, D.P., Jones, D.A.: Stress intensity factors in fretting fatigue. J. Strain Anal. Eng. Des. 14(1), 1–6 (1979)Kondoh, K., Mutoh, Y.: Crack behavior in the early stage of fretting fatigue fracture. In: Hoeppner, D.W., Chandrasekaran, V., Elliott, C.B. (eds) Fretinge Fatigue: Current Technology and Practices, ASTM STP 1367. American society for Testing and Materials, West Conshohocken, PA (2000)Nicholas, T., Hutson, A., John, R., Olson, S.: A fracture mechanics methodology assessment for fretting fatigue. Int. J. Fatigue 25(9–11), 1069–1077 (2003)Muñoz, S., Navarro, C., Domínguez, J.: Application of fracture mechanics to estimate fretting fatigue endurance curves. Eng. Fract. Mech. 74(14), 2168–2186 (2007)Navarro, C., Muñoz, S., Domínguez, J.: Influence of the initiation length in predictions of life in Fretting Fatigue. Strain 47, e283–e291 (2011)Sabsabi, M., Giner, E., Fuenmayor, F.J.: Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. Int. J. Fatigue 33(6), 811–822 (2011)Hojjati-Talemi, R., AbdelWahab, M., De Baets, P.: Numerical investigation into effect of contact geometry on fretting fatigue crack propagation lifetime. Tribol. Trans. 55(3), 365–375 (2012)Talemi, R.H., Wahab, M.A., Baets, P.D.: Numerical modelling of fretting fatigue. J. Phys: Conf. Ser. 305(1), 012061 (2011)Lemaitre, J.: Coupled elasto-plasticity and damage constitutive equations. Comput. Meth. Appl. Mech. Eng. 51(1–3), 31–49 (1985)Mutoh, Y., Xu, J.Q., Kondoh K.: Observations and analysis of fretting fatigue crack initiation and propagation. In: Mutoh, Y., Kinyon, S.E., Hoeppner, D.W. (eds) Fretting Fatigue: Advances In Basic Understanding And Applications. Stp, vol. 1425, pp. 61–75. ASTM International, West Conshohocken, PA (2003)Talemi, R.H., Wahab, M.A.: Finite element analysis of localized plasticity in Al 2024-T3 subjected to fretting fatigue. Tribol. Trans. 55(6), 805–814 (2012)Kindervater, C.M., Johnson, A., Kohlgrüber, D., Lützenburger, M.: Crash and High Velocity Impact Simulation Methodologies for Aircraft Structures. Structural Failure and Plasticity (IMPLAST 2000) IMPLAST (2000)Kachanov, L.M.: Time of the rupture process under creep conditions. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. 8, 26–31 (1958)Lemaitre, J.: Formulation and identification of damage kinetic constitutive equations. In: Krajcinovic, D., Lemaitre J. (eds.) Continuum Damage Mechanics: Theory and Applications CISM Courses and Lectures No. 295, pp. 37–99. Springer, Wien (1987)Lemaitre, J.: Engineering Damage Mechanics. Springer, The Netherlands (2005)Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80(2), 233–245 (1984)Marmi, A.K., Habraken, A.M., Duchene, L.: Multiaxial fatigue damage modelling at macro scale of Ti–6Al–4 V alloy. Int. J. Fatigue 31(11–12), 2031–2040 (2009)El Haddad, M.H., Dowling, N.E., Topper, T.H., Smith, K.N.: J integral applications for short fatigue cracks at notches. Int. J. Fract. 16(1), 15–30 (1980)Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139(1–4), 289–314 (1996)Giner, E., Sukumar, N., Denia, F.D., Fuenmayor, F.J.: Extended finite element method for fretting fatigue crack propagation. Int. J. Solids Struct. 45(22–23), 5675–5687 (2008)Lykins, C.D., Mall, S., Jain, V.K.: Combined experimental-numerical investigation of fretting fatigue crack initiation. Int. J. Fatigue 23(8), 703–711 (2001)Navarro, C., Garcia, M., Dominguez, J.: A procedure for estimating the total life in fretting fatigue. Fatigue Fract. Eng. Mater. Struct. 26(5), 459–468 (2003)Giner, E., Hills, D.A., Fuenmayor, F.J.: Complete elastic contact subject to cyclic shear in partial slip. J. Eng. Mech.-ASCE 131(11), 1146–1156 (2005

    Fatigue life analysis of un-repaired and repaired metallic substrate using FRANC2D

    No full text
    We present numerical investigations on fatigue life analysis of un-re-paired and repaired metallic substrate. Most of the engineering structures fail due to fatigue under dynamic loading. While research is mostly focused in experi-mental fatigue analysis, only few numerical approaches are found in the litera-ture. In this paper, fatigue life analysis of metallic substrate with two types of repairs is presented. One type of repair is with mechanical fasteners, which is most commonly used technique, and the other one is adhesive bonding. 2D nu-merical fatigue analysis is performed on un-repaired, repaired-riveted and re-paired-bonded joints of metallic substrate in FRANC2D/L (Fracture Analysis 2D Layered). Fatigue life curves showed that the repaired-bonded joint has 14 times higher life expectation than un-repaired and repaired-riveted joints.Peer ReviewedPostprint (published version
    corecore