13 research outputs found

    Rise and tilt of metamorphic rocks in the lower plate of a detachment fault in the Funeral Mountains, Death-Valley, California

    Get PDF
    The Funeral Mountains in eastern California preserve a record of Early Cretaceous (?) metamorphism followed by ductile deformation, uplift, and low-angle normal (detachment) faulting. Ar-40/Ar-39 age spectra indicate that cooling and uplift of the lower plate began in Cretaceous time. Uplift was accommodated by normal-sense movement along a wide northwest dipping shear zone. Mylonitic fabrics, some of which have been dated as Late Cretaceous, deformed older high-temperature metamorphic textures. Analyses of shear bands, mica fish, sigma and delta porphyroclasts, grain shape fabrics, and folds indicate that the upper surfaces moved toward 299-degrees +/- 12 (top to the northwest) relative to lower surfaces. Uplift continued until the near present, the youngest phase being accommodated by top-to-the-northwest movement along the detachment fault, which formed subparallel to lower-plate mylonitic fabrics. Fission track apatite data indicate that exposure of the lower plate to the surface occurred sometime after 6 Ma. Reconstruction along the movement vector places the Grapevine Mountains over the Funeral Mountains, having been displaced at least 40 km. Isograds and thermobarometry in pelitic schist from the lower plate indicate increasing pressures and temperatures of equilibration toward the northwest. The maximum temperature and pressure was determined on a sample from Monarch Canyon using thermobarometry, 700-degrees-C at a depth of 32 km. At Chloride Cliff, 5 km southeast of Monarch Canyon, 4 samples yielded 575-degrees-600-degrees-C at depths of 19-27 km. At Indian Pass, 17 km southeast of Monarch Canyon, a temperature of 490-degrees-C was determined. In the southern Funeral Mountains, about 50 km southeast of Monarch Canyon, conodont color alteration indexes indicate temperatures of 325-425-degrees-C. These data indicate that the lower plate is presently tilted strongly to the southeast from the orientation it maintained at the peak of metamorphism. Thermochronologic data (K-Ar on muscovite, biotite, and hornblende, Ar-40/Ar-39 on hornblende, and fission track on apatite, titanite, and zircon) indicate that both tilting and the transition from ductile to brittle styles of quartz deformation are confined to the interval 21-6 Ma; during the latter part of this interval (11-6 Ma), rapid uplift and movement along the detachment fault are documented. The findings support current theories of detachment fault evolution in which a dipping fault surface undergoes rotation to a subhorizontal orientation while the lower late undergoes a com arable tilt

    Geodynamics of synconvergent extension and tectonic mode switching: Constraints from the Sevier-Laramide orogen

    Get PDF
    Many orogenic belts experience alternations in shortening and extension (tectonic mode switches) during continuous plate convergence. The geodynamics of such alternations are not well understood. We present a record of Late Cretaceous to Eocene alternations of shortening and extension from the interior of the retroarc Sevier-Laramide orogen of the western United States. We integrate new Lu-Hf garnet geochronometry with revised PT paths utilizing differential thermobarometry combined with isochemical G-minimization plots, and monazite Th-Pb inclusion geochronometry to produce a well-constrained “M” shaped PTt path. Two burial events (86 and 65 Ma) are separated by ∼3 kbar of decompression. The first burial episode is Late Cretaceous, records a 2 kbar pressure increase at ∼515–550 °C and is dated by a Lu-Hf garnet isochron age of 85.5 ± 1.9 Ma (2σ); the second burial episode records ∼1 kbar of pressure increase at ∼585–615 °C, and is dated by radially decreasing Th-Pb ages of monazite inclusions in garnet between ∼65 and 45 Ma. We propose a synconvergent lithospheric delamination cycle, superimposed on a dynamic orogenic wedge, as a viable mechanism. Wedge tapers may evolve from critical to subcritical (amplification), to supercritical (separation), and back to subcritical (re-equilibration) owing to elevation changes resulting from isostatic adjustments during the amplification and separation of Rayleigh-Taylor instabilities, and post-separation thermal and rheological re-equilibration. For the Sevier-Laramide hinterland, the sequence of Late Cretaceous delamination, low-angle subduction, and slab rollback/foundering during continued plate convergence explains the burial-exhumation-burial-exhumation record and the “M-shaped” PTt path

    Laserprobe 40Ar/39Ar dating of strain fringes: Mid-Cretaceous synconvergent orogen-parallel extension in the interior of the Sevier orogen

    Get PDF
    [1] UV and CO2 laser-probe 40Ar/39Ar in situ analyses of phlogopite and muscovite in fibrous strain fringes from greenschist-facies metamorphic rocks document mica growth ages at temperatures lower than their closure temperatures, and therefore directly date deformation. The new dates resolve the age of the earliest ductile fabric recorded in the Raft River–Albion–Grouse Creek metamorphic core complex of Utah and Idaho. Phlogopite was dated in quartz-calcite-phlogopite strain fringes around pyrite in Pennsylvanian-Permian rocks from the Grouse Creek Mountains (Utah) using both the UV and CO2 laser probe; muscovite was dated in quartz-muscovite strain fringes around pyrite in deformed Jurassic sills from the Black Pine Mountains (Idaho) using the CO2 laser probe. Phlogopite 40Ar/39Ar ages for individual strain fringes (Grouse Creek Mountains) range from 92 Ma to 110 Ma, with the most reliable ages ranging from 101 Ma to 110 Ma (mean age, 105.0 ± 5.8 Ma). Muscovite 40Ar/39Ar ages for individual strain fringes (Black Pine Mountains) range from 97 Ma to 112 Ma (mean age, 104.7 ± 5.8 Ma). Strain fringes are associated with a subhorizontal foliation and a generally N-trending elongation lineation exhibiting components of top-to-the-north simple shear and coaxial strain accommodating N-S extension and subvertical shortening. Midcrustal northward flow at 105 (±6) Ma within the interior of the Sevier orogen, coeval with east-directed shortening in the foreland and with plate convergence, records orogen-parallel synconvergent extension. We favor gravitational relaxation of structural culminations resulting from focused crustal shortening as a driving mechanism for orogen-parallel flow

    The Mahogany Peaks fault, a late Cretaceous-Paleocene(?) normal fault in the hinterland of the Sevier orogen

    Get PDF
    The contact separating Ordovician rocks from the underlying lower part of the Raft River Mountains sequence, northwestern Utah, is reinterpreted as a large-displacement low-angle normal fault, the Mahogany Peaks fault, that excised 4-5 km of structural section. High delta(13)C values identified in marble in the lower part of the Raft River Mountains sequence suggest a Proterozoic, rather than Cambrian age. Metamorphic conditions of hanging wall Ordovician and footwall Proterozoic strata are upper greenschist and middle amphibolite facies, respectively, and quantitative geothermometry indicates a temperature discontinuity of about 100 degrees C. A discordance in muscovite Ar-40/Ar-39 cooling ages between hanging wall and footwall strata in eastern exposures, and the lack of a corresponding cooling age discordance in western exposures, suggest a component of west dip for the fault. The juxtaposition of younger over older and colder over hotter rocks, the muscovite cooling age discordance with older over younger, and top-to-the-west shearing down-structure are consistent with an extensional origin. The age of faulting is bracketed between 90 and 47 Ma, and may be synchronous with footwall cooling at about 60-70 Ma. Recognition of the Mahogany Peaks fault, its extensional origin, and its probable latest Cretaceous to Paleocene age provides further evidence that episodes of extension at mid-crustal levels in the hinterland of the Sevier orogenic belt were synchronous with protracted shortening in the foreland fold and thrust belt, and that the Sevier orogen acted as a dynamic orogenic wedge

    Equation of State for Natural Almandine, Spessartine, Pyrope Garnet: Implications for Quartz-In-Garnet Elastic Geobarometry

    Get PDF
    The equation of state (EoS) of a natural almandine74spessartine13pyrope10grossular3 garnet of a typical composition found in metamorphic rocks in Earth’s crust was obtained using single crystal synchrotron X-ray diffraction under isothermal room temperature compression. A third-order Birch-Murnaghan EoS was fitted to P-V data and the results are compared with published EoS for iron, manganese, magnesium, and calcium garnet compositional end-members. This comparison reveals that ideal solid solution mixing can reproduce the EoS for this intermediate composition of garnet. Additionally, this new EoS was used to calculate geobarometry on a garnet sample from the same rock, which was collected from the Albion Mountains of southern Idaho. Quartz-ingarnet elastic geobarometry was used to calculate pressures of quartz inclusion entrapment using alternative methods of garnet mixing and both the hydrostatic and Grunëisen tensor approaches. QuiG barometry pressures overlap within uncertainty when calculated using EoS for pure endmember almandine, the weighted averages of end-member EoS, and the EoS presented in this study. Grunëisen tensors produce apparent higher pressures relative to the hydrostatic method, but with large uncertainties

    Timing of detachment faulting in the Bullfrog Hills and Bare Mountain area, southwest Nevada: Inferences from 40Ar/39Ar, K-Ar, U-Pb and fission track thermochronology

    Get PDF
    Crustal extension in the Bullfrog Hills and Bare Mountain area of southwest Nevada is associated with movement along a regional detachment fault. Normal faulting in the upper plate and rapid cooling (denudation) of the lower plate were coeval with Miocene silicic volcanism and with west-northwest transport along the detachment fault. A west-northwest progression of tilting along upper plate normal faults is indicated by ages of the volcanic rocks in relation to angular unconformities. Near the breakaway, tilting in the upper plate occurred between 12.7 and 11.6 Ma, continued less strongly past 10.7 Ma, and was over by 8.2 Ma. Ten to 20 km west of the breakaway, tilting occurred between 10.7 and 10.33 Ma, continued less strongly after 10.33 Ma, and was over by 8.1 Ma. The cooling histories of the lower plate metamorphic rocks were determined by thermochronologic dating methods: K-Ar and Ar-40/(39)A on muscovite, biotite, and hornblende, Ar-40/(39)A on K-feldspar, U-Pb on apatite, zircon, and sphene, and fission track on apatite, zircon, and sphene. Lower plate rocks 10 km west of the breakaway cooled slowly from Early Cretaceous lower-amphibolite facies conditions through 350+/-50 degrees to 300+/-50 degrees C between 57 and 38 Ma, then cooled rapidly from 205+/-50 degrees to 120+/-5O degrees C between 12.6+/-1.6 and 11.1+/-1.9 Ma. Lower plate rocks 20 km west of the breakaway cooled slowly from Early Cretaceous upper-amphibolite facies conditions through 500+/-50 degrees C at 78-67 Ma, passed through 350+/-50 degrees to 300+/-50 degrees C between 16.3+/-0.4 and 10.5+/-0.3 Ma, then cooled rapidly from 285+/-50 degrees to 120+/-50 degrees C between 10.2 and 8.6 Ma. Upper plate tilting and rapid cooling (denudation) of the lower plate occurred simultaneously in the respective areas. The early slow-cooling part of the lower plate thermal histories was probably related to erosion at the Earth's surface, which stripped off about 9 km of material in 50 to 100 m.y. The results indicate an initial fault dip greater than or equal to 30 degrees and a 12 mm yr(-1) west-northwest migration of the locus of rapid tilting in the upper plate

    Pressure-Temperature-Time Paths from the Funeral Mountains, California, Reveal Jurassic Retroarc Underthrusting during Early Sevier Orogenesis

    Full text link
    New metamorphic pressure-temperature (P-T) paths and Lu-Hf garnet ages reveal a temporal correlation between Middle to Late Jurassic retroarc underthrusting and arc magmatism in southwestern North America. P-T paths were determined for 12 garnet porphyroblasts from six samples from the Chloride Cliff area of the Funeral Mountains in southeastern California. The composite path shows a pressure increase from 4.2 to 6.5 kbar as temperature increased from 550 to 575 °C, followed by a pressure decrease to 5.1 kbar during a further increase in temperature to 590 °C. Lu-Hf garnet ages from a pelitic schist (167.3 ± 0.7 Ma) and a garnet amphibolite (165.1 ± 9.2 Ma) place these P-T paths in the Middle Jurassic. We interpret the near-isothermal pressure increase portion of the P-T path to have developed during thrust-related burial, similar to lower grade rocks at Indian Pass, 8 km to the southeast, where garnet P-T paths show a pressure increase dated by the Lu-Hf method at 158.2 ± 2.6 Ma. We interpret the pressure decrease portion of the composite P-T path from the Chloride Cliff area to reflect exhumation contemporaneous with cooling in the Indian Pass area documented from muscovite 40Ar/39Ar step-heating ages of 152.6 ± 1.4 and 146 ± 1.1 Ma. The conditions and timing of metamorphism determined for the Indian Pass and Chloride Cliff areas, and isogradic surfaces that cut across stratigraphy, support the interpretation that the strata were dipping moderately NW during metamorphism, parallel to the thrust ramp that buried the rocks. Burial likely resulted from top-SE motion along the Funeral thrust, which was later reactivated as a low-angle normal fault with opposite motion to become the currently exposed Boundary Canyon detachment that was responsible for Miocene and possibly older exhumation. The part of the burial history captured by garnet growth occurred ∼6 m.y. before the 161 Ma peak of high-flux magmatism in the arc. Burial was contemporaneous with metamorphic ages from the western Sierra Nevada metamorphic belt, with the possible timing of accretion of arc terranes in northern California, and with the initiation of Franciscan subduction. Burial ages are also similar in timing with generally E-W crustal shortening in the retroarc that produced the East Sierra thrust system, the Luning-Fencemaker fold and thrust belt, the possible early history of the Central Nevada thrust belt, and the western thrusts of the southern Sevier belt. The timing of tectonic burial documented in this study and of high-flux magmatism in the arc supports the interpretation that the development of a coherent arc-trench system in the Early Jurassic resulted in the underthrusting of melt-fertile material beneath the arc along west- to northwest-dipping faults such as the Funeral thrust in the Jurassic, which penetrated the basement to the west as well as the roots of the magmatic arc, leading to increased magmatism

    Equation of State for Natural Almandine, Spessartine, Pyrope Garnet: Implications for Quartz-In-Garnet Elastic Geobarometry

    No full text
    The equation of state (EoS) of a natural almandine74spessartine13pyrope10grossular3 garnet of a typical composition found in metamorphic rocks in Earth’s crust was obtained using single crystal synchrotron X-ray diffraction under isothermal room temperature compression. A third-order Birch-Murnaghan EoS was fitted to P-V data and the results are compared with published EoS for iron, manganese, magnesium, and calcium garnet compositional end-members. This comparison reveals that ideal solid solution mixing can reproduce the EoS for this intermediate composition of garnet. Additionally, this new EoS was used to calculate geobarometry on a garnet sample from the same rock, which was collected from the Albion Mountains of southern Idaho. Quartz-in-garnet elastic geobarometry was used to calculate pressures of quartz inclusion entrapment using alternative methods of garnet mixing and both the hydrostatic and Grüneisen tensor approaches. QuiG barometry pressures overlap within uncertainty when calculated using EoS for pure end-member almandine, the weighted averages of end-member EoS, and the EoS presented in this study. Grüneisen tensors produce apparent higher pressures relative to the hydrostatic method, but with large uncertainties
    corecore