60 research outputs found

    Prospective multicenter randomized patient recruitment and sample collection to enable future measurements of sputum biomarkers of inflammation in an observational study of cystic fibrosis.

    Get PDF
    BACKGROUND: Biomarkers of inflammation predictive of cystic fibrosis (CF) disease outcomes would increase the power of clinical trials and contribute to better personalization of clinical assessments. A representative patient cohort would improve searching for believable, generalizable, reproducible and accurate biomarkers. METHODS: We recruited patients from Mountain West CF Consortium (MWCFC) care centers for prospective observational study of sputum biomarkers of inflammation. After informed consent, centers enrolled randomly selected patients with CF who were clinically stable sputum producers, 12 years of age and older, without previous organ transplantation. RESULTS: From December 8, 2014 through January 16, 2016, we enrolled 114 patients (53 male) with CF with continuing data collection. Baseline characteristics included mean age 27 years (SD = 12), 80% predicted forced expiratory volume in 1 s (SD = 23%), 1.0 prior year pulmonary exacerbations (SD = 1.2), home elevation 328 m (SD = 112) above sea level. Compared with other patients in the US CF Foundation Patient Registry (CFFPR) in 2014, MWCFC patients had similar distribution of sex, age, lung function, weight and rates of exacerbations, diabetes, pancreatic insufficiency, CF-related arthropathy and airway infections including methicillin-sensitive or -resistant Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, fungal and non-tuberculous Mycobacteria infections. They received CF-specific treatments at similar frequencies. CONCLUSIONS: Randomly-selected, sputum-producing patients within the MWCFC represent sputum-producing patients in the CFFPR. They have similar characteristics, lung function and frequencies of pulmonary exacerbations, microbial infections and use of CF-specific treatments. These findings will plausibly make future interpretations of quantitative measurements of inflammatory biomarkers generalizable to sputum-producing patients in the CFFPR

    A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop

    Get PDF
    Traditional crops historically provided accessible and affordable nutrition to millions of rural dwellers but have been neglected, with most modern agricultural systems over reliant on a small number of internationally-traded crops. Traditional crops are typically well-adapted to local agro-ecological conditions and many are nutrient-dense. They can play a vital role in local food systems through enhanced nutrition (especially where diets are dominated by starch crops), food security and livelihoods for smallholder farmers, and a climate-resilient and biodiverse agriculture. Using short-read, long-read and phased sequencing technologies we generated a high-quality chromosome-level genome assembly for Amaranthus cruentus, an under-researched crop with micronutrient- and protein-rich leaves and gluten-free seed, but lacking improved varieties, with respect to productivity and quality traits. The 370.9 MB genome demonstrates a shared whole genome duplication with a related species, Amaranthus hypochondriacus. Comparative genome analysis indicates chromosomal loss and fusion events following genome duplication that are common to both species, as well as fission of chromosome 2 in A. cruentus alone, giving rise to a haploid chromosome number of 17 (versus 16 in A. hypochondriacus). Genomic features potentially underlying the nutritional value of this crop include two A. cruentus-specific genes with a likely role in phytic acid synthesis (an anti-nutrient), expansion of ion transporter gene families, and identification of biosynthetic gene clusters conserved within the amaranth lineage. The A. cruentus genome assembly will underpin much-needed research and global breeding efforts to develop improved varieties for economically viable cultivation and realisation of the benefits to global nutrition security and agrobiodiversity

    Defoliation timing for optimal leaf nutrition in dual-use amaranth production systems

    No full text
    BACKGROUND: Amaranth leaves can provide important nutrients to small-scale farming families growing amaranth for seed. Amaranth is known to be tolerant to defoliation, but there is little guidance on when defoliation should be performed for optimal nutritional benefits. This series of experiments assessed tolerance to defoliation at different points throughout the vegetative stage of development, in addition to the nutritional benefits and flavor of amaranth leaves at each stage. RESULTS: Overall, timing of defoliation had no impact on seed yield or quality. Fifty percent defoliation at any point did not significantly reduce seed yield, whereas 100% defoliation throughout development reduced seed yield. The nutritional value of amaranth leaves differed substantially throughout development, with the highest concentrations of iron mid-way through vegetative development, and the highest levels of vitamin A, magnesium, and copper at the end of the vegetative development stage. Palatability was highest in young leaves, and decreased as plants aged. We also found that neither timing nor intensity of defoliation had an influence on branching, which can negatively influence ease of harvest. CONCLUSIONS: These results indicate that amaranth leaves are a nutritious food source that provides vital nutrients at different concentrations throughout development. Farmers who wish to harvest both leaves and seeds can harvest up to 50% of the leaves at any point during vegetative development or bud formation while maintaining seed yield. Leaf harvest timing can thus be tailored to nutritional needs, although palatability decreases with plant age. © 2020 Society of Chemical Industry
    corecore