107 research outputs found

    Isolation and Annotation of Bacteriophage Yaboi

    Get PDF
    From the Washington University Office of Undergraduate Research Digest (WUURD), Vol. 13, 05-01-2018. Published by the Office of Undergraduate Research. Joy Zalis Kiefer, Director of Undergraduate Research and Associate Dean in the College of Arts & Sciences; Lindsey Paunovich, Editor; Helen Human, Programs Manager and Assistant Dean in the College of Arts and Sciences Mentor(s): Kathy Hafer and Chris Schaffe

    The complex interactions between rotavirus and the gut microbiota

    Get PDF
    Human rotavirus (HRV) is the leading worldwide cause of acute diarrhea-related death in children under the age of five. RV infects the small intestine, an important site of colonization by the microbiota, and studies over the past decade have begun to reveal a complex set of interactions between RV and the gut microbiota. RV infection can temporarily alter the composition of the gut microbiota and probiotic administration alleviates some symptoms of infectio

    Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma

    Get PDF
    Neuroblastoma is a childhood tumor in which MYC oncogenes are commonly activated to drive tumor progression. Survival for children with high-risk neuroblastoma remains poor despite treatment that incorporates high-dose chemotherapy, stem cell support, surgery, radiation therapy and immunotherapy. More effective and less toxic treatments are sought and one approach under clinical development involves re-purposing the anti-protozoan drug difluoromethylornithine (DFMO; Eflornithine) as a neuroblastoma therapeutic. DFMO is an irreversible inhibitor of ornithine decarboxylase (Odc), a MYC target gene, bona fide oncogene, and the rate-limiting enzyme in polyamine synthesis. DFMO is approved for the treatment of Trypanosoma brucei gambiense encephalitis (“African sleeping sickness”) since polyamines are essential for the proliferation of these protozoa. However, polyamines are also critical for mammalian cell proliferation and the finding that MYC coordinately regulates all aspects of polyamine metabolism suggests polyamines may be required to support cancer promotion by MYC. Pre-emptive blockade of polyamine synthesis is sufficient to block tumor initiation in an otherwise fully penetrant transgenic mouse model of neuroblastoma driven by MYCN, underscoring the necessity of polyamines in this process. Moreover, polyamine depletion regimens exert potent anti-tumor activity in pre-clinical models of established neuroblastoma as well, in combination with numerous chemotherapeutic agents and even in tumors with unfavorable genetic features such as MYCN, ALK or TP53 mutation. This has led to the testing of DFMO in clinical trials for children with neuroblastoma. Current trial designs include testing lower dose DFMO alone (2,000 mg/m2/day) starting at the completion of standard therapy, or higher doses combined with chemotherapy (up to 9,000 mg/m2/day) for patients with relapsed disease that has progressed. In this review we will discuss important considerations for the future design of DFMO-based clinical trials for neuroblastoma, focusing on the need to better define the principal mechanisms of anti-tumor activity for polyamine depletion regimens. Putative DFMO activities that are both cancer cell intrinsic (targeting the principal oncogenic driver, MYC) and cancer cell extrinsic (altering the tumor microenvironment to support anti-tumor immunity) will be discussed. Understanding the mechanisms of DFMO activity are critical in determining how it might be best leveraged in upcoming clinical trials. This mechanistic approach also provides a platform by which iterative pre-clinical testing using translational tumor models may complement our clinical approaches

    Evaluation of Norepinephrine Transporter Expression and Metaiodobenzylguanidine Avidity in Neuroblastoma: A Report from the Childrens Oncology Group.

    Get PDF
    Purpose. (123)I-metaiodobenzylguanidine (MIBG) is used for the diagnostic evaluation of neuroblastoma. We evaluated the relationship between norepinephrine transporter (NET) expression and clinical MIBG uptake. Methods. Quantitative reverse transcription PCR (N = 82) and immunohistochemistry (IHC; N = 61) were performed for neuroblastoma NET mRNA and protein expression and correlated with MIBG avidity on diagnostic scans. The correlation of NET expression with clinical features was also performed. Results. Median NET mRNA expression level for the 19 MIBG avid patients was 12.9% (range 1.6-73.7%) versus 5.9% (range 0.6-110.0%) for the 8 nonavid patients (P = 0.31). Median percent NET protein expression was 50% (range 0-100%) in MIBG avid patients compared to 10% (range 0-80%) in nonavid patients (P = 0.027). MYCN amplified tumors had lower NET protein expression compared to nonamplified tumors (10% versus 50%; P = 0.0002). Conclusions. NET protein expression in neuroblastoma correlates with MIBG avidity. MYCN amplified tumors have lower NET protein expression

    Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2009 The Authors.Background - Clusterin expression in various types of human cancers may be higher or lower than in normal tissue, and clusterin may promote or inhibit apoptosis, cell motility, and inflammation. We investigated the role of clusterin in tumor development in mouse models of neuroblastoma. Methods - We assessed expression of microRNAs in the miR-17-92 cluster by real-time reverse transcription–polymerase chain reaction in MYCN-transfected SH-SY5Y and SH-EP cells and inhibited expression by transfection with microRNA antisense oligonucleotides. Tumor development was studied in mice (n = 66) that were heterozygous or homozygous for the MYCN transgene and/or for the clusterin gene; these mice were from a cross between MYCN-transgenic mice, which develop neuroblastoma, and clusterin-knockout mice. Tumor growth and metastasis were studied in immunodeficient mice that were injected with human neuroblastoma cells that had enhanced (by clusterin transfection, four mice per group) or reduced (by clusterin short hairpin RNA [shRNA] transfection, eight mice per group) clusterin expression. All statistical tests were two-sided. Results - Clusterin expression increased when expression of MYCN-induced miR-17-92 microRNA cluster in SH-SY5Y neuroblastoma cells was inhibited by transfection with antisense oligonucleotides compared with scrambled oligonucleotides. Statistically significantly more neuroblastoma-bearing MYCN-transgenic mice were found in groups with zero or one clusterin allele than in those with two clusterin alleles (eg, 12 tumor-bearing mice in the zero-allele group vs three in the two-allele group, n = 22 mice per group; relative risk for neuroblastoma development = 4.85, 95% confidence interval [CI] = 1.69 to 14.00; P = .005). Five weeks after injection, fewer clusterin-overexpressing LA-N-5 human neuroblastoma cells than control cells were found in mouse liver or bone marrow, but statistically significantly more clusterin shRNA-transfected HTLA230 cells (3.27%, with decreased clusterin expression) than control-transfected cells (1.53%) were found in the bone marrow (difference = 1.74%, 95% CI = 0.24% to 3.24%, P = .026). Conclusions - We report, to our knowledge, the first genetic evidence that clusterin is a tumor and metastasis suppressor gene.Sport Aiding Medical Research for Kids (SPARKS), Great Ormond Street Hospital/National Health Service, the National Cancer Institute and University of Parma

    Mutations in PIK3CA are infrequent in neuroblastoma

    Get PDF
    BACKGROUND: Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. METHODS: Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. RESULTS: We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. CONCLUSION: These data suggest that activating mutations in the Ras/Raf-MAPK/PI3K signaling cascades occur infrequently in neuroblastoma. Further, despite compelling evidence for MYC and RAS cooperation in vitro and in vivo to promote tumourigenesis, activation of RAS signal transduction does not constitute a preferred secondary pathway in neuroblastomas with MYCN deregulation in either human tumors or murine models

    Serum-Based Quantification of MYCN Gene Amplification in Young Patients with Neuroblastoma: Potential Utility as a Surrogate Biomarker for Neuroblastoma

    Get PDF
    We previously developed a method for determining MYCN gene amplification status using cell-free DNA fragments released from cancer cells into the blood of patients with neuroblastoma (NB). Here, we analyzed the relationship between MYCN amplification (MNA) status and neuroblastoma prognosis. We screened serum samples from 151 patients with NB for MNA, using real-time quantitative PCR, and compared the results with MYCN status determined using paired tumor samples. We additionally investigated whether MNA status correlates with patient survival. When a cut-off value of 5 was used, serum-based MNA analysis was found to show good sensitivity (86%) and very high specificity (95%). The sensitivities for stage 1 and 2 might be acceptable, even though it is not as good as for stage 3 and 4 (67% for stage 1 and 2, 92% for stage 3, and 87% for stage 4). MNA status correlated with overall survival in our cohort of 82 patients, with survival data available (p < 0.01). The hazard ratio of MNA status was 4.98 in patients diagnosed at less than 18 months of age (95% confidence interval, 1.00–24.78), and 1.41 (95% confidence interval, 0.63–3.14) for those diagnosed at 18 months of age or older. Serum-based MNA analysis is rapid and non-invasive compared with tumor-based MNA analysis, and has potential to predict tumor MNA status. There is still a room to improve the sensitivity of the test for tumors of stages 1 and 2, nonetheless this assay might help to determine therapeutic strategies prior to tumor biopsy, especially for patients with a life-threatening condition, as well as for patients of less than 18 months of age whose risk-grouping and treatment allocation depends on their MNA status

    A G316A polymorphism in the ornithine decarboxylase gene promoter modulates MYCN-driven childhood neuroblastoma

    Get PDF
    Simple Summary Neuroblastoma is a devasting childhood cancer in which multiple copies (amplification) of the cancer-causing gene MYCN strongly predict poor outcome. Neuroblastomas are reliant on high levels of cellular components called polyamines for their growth and malignant behavior, and the gene regulating polyamine synthesis is called ODC1. ODC1 is often coamplified with MYCN, and in fact is regulated by MYCN, and like MYCN is prognostic of poor outcome. Here we studied a naturally occurring genetic variant or polymorphism that occurs in the ODC1 gene, and used gene editing to demonstrate the functional importance of this variant in terms of ODC1 levels and growth of neuroblastoma cells. We showed that this variant impacts the ability of MYCN to regulate ODC1, and that it also influences outcome in neuroblastoma, with the rarer variant associated with a better survival. This study addresses the important topic of genetic polymorphisms in cancer. Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein

    Evaluation of Norepinephrine Transporter Expression and Metaiodobenzylguanidine Avidity in Neuroblastoma: A Report from the Children's Oncology Group

    Get PDF
    Purpose. (123)I-metaiodobenzylguanidine (MIBG) is used for the diagnostic evaluation of neuroblastoma. We evaluated the relationship between norepinephrine transporter (NET) expression and clinical MIBG uptake. Methods. Quantitative reverse transcription PCR (N = 82) and immunohistochemistry (IHC; N = 61) were performed for neuroblastoma NET mRNA and protein expression and correlated with MIBG avidity on diagnostic scans. The correlation of NET expression with clinical features was also performed. Results. Median NET mRNA expression level for the 19 MIBG avid patients was 12.9% (range 1.6–73.7%) versus 5.9% (range 0.6–110.0%) for the 8 nonavid patients (P = 0.31). Median percent NET protein expression was 50% (range 0–100%) in MIBG avid patients compared to 10% (range 0–80%) in nonavid patients (P = 0.027). MYCN amplified tumors had lower NET protein expression compared to nonamplified tumors (10% versus 50%; P = 0.0002). Conclusions. NET protein expression in neuroblastoma correlates with MIBG avidity. MYCN amplified tumors have lower NET protein expression
    corecore