246 research outputs found

    Evaluation of elicitation methods to quantify Bayes linear models

    Get PDF
    The Bayes linear methodology allows decision makers to express their subjective beliefs and adjust these beliefs as observations are made. It is similar in spirit to probabilistic Bayesian approaches, but differs as it uses expectation as its primitive. While substantial work has been carried out in Bayes linear analysis, both in terms of theory development and application, there is little published material on the elicitation of structured expert judgement to quantify models. This paper investigates different methods that could be used by analysts when creating an elicitation process. The theoretical underpinnings of the elicitation methods developed are explored and an evaluation of their use is presented. This work was motivated by, and is a precursor to, an industrial application of Bayes linear modelling of the reliability of defence systems. An illustrative example demonstrates how the methods can be used in practice

    Reflections on the Cost of Low-Cost Whole Genome Sequencing: Framing the Health Policy Debate

    Get PDF
    The cost of whole genome sequencing is dropping rapidly. There has been a great deal of enthusiasm about the potential for this technological advance to transform clinical care. Given the interest and significant investment in genomics, this seems an ideal time to consider what the evidence tells us about potential benefits and harms, particularly in the context of health care policy. The scale and pace of adoption of this powerful new technology should be driven by clinical need, clinical evidence, and a commitment to put patients at the centre of health care policy

    Implementation of Patient Engagement Tools in Electronic Health Records to Enhance Patient-Centered Communication: Protocol for Feasibility Evaluation and Preliminary Results

    Get PDF
    BACKGROUND: Patient-physician communication during clinical encounters is essential to ensure quality of care. Many studies have attempted to improve patient-physician communication. Incorporating patient priorities into agenda setting and medical decision-making are fundamental to patient-centered communication. Efficient and scalable approaches are needed to empower patients to speak up and prepare physicians to respond. Leveraging electronic health records (EHRs) in engaging patients and health care teams has the potential to enhance the integration of patient priorities in clinical encounters. A systematic approach to eliciting and documenting patient priorities before encounters could facilitate effective communication in such encounters. OBJECTIVE: In this paper, we report the design and implementation of a set of EHR tools built into clinical workflows for facilitating patient-physician joint agenda setting and the documentation of patient concerns in the EHRs for ambulatory encounters. METHODS: We engaged health information technology leaders and users in three health care systems for developing and implementing a set of EHR tools. The goal of these tools is to standardize the elicitation of patient priorities by using a previsit patient important issue questionnaire distributed through the patient portal to the EHR. We built additional EHR documentation tools to facilitate patient-staff communication when the staff records the vital signs and the reason for the visit in the EHR while in the examination room, with a simple transmission method for physicians to incorporate patient concerns in EHR notes. RESULTS: The study is ongoing. The anticipated completion date for survey data collection is November 2021. A total of 34,037 primary care patients from three health systems (n=26,441; n=5136; and n=2460 separately recruited from each system) used the previsit patient important issue questionnaire in 2020. The adoption of the digital previsit questionnaire during the COVID-19 pandemic was much higher in one health care system because it expanded the use of the questionnaire from physicians participating in trials to all primary care providers midway through the year. It also required the use of this previsit questionnaire for eCheck-ins, which are required for telehealth encounters. Physicians and staff suggested anecdotally that this questionnaire helped patient-clinician communication, particularly during the COVID-19 pandemic. CONCLUSIONS: EHR tools have the potential to facilitate the integration of patient priorities into agenda setting and documentation in real-world primary care practices. Early results suggest the feasibility and acceptability of such digital tools in three health systems. EHR tools can support patient engagement and clinicians\u27 work during in-person and telehealth visits. They could potentially exert a sustained influence on patient and clinician communication behaviors in contrast to prior ad hoc educational efforts targeting patients or clinicians. TRIAL REGISTRATION: ClinicalTrials.gov NCT03385512; https://clinicaltrials.gov/ct2/show/NCT03385512. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/30431

    A novel angiotensin I-converting enzyme mutation (S333W) impairs N-domain enzymatic cleavage of the anti-fibrotic peptide, AcSDKP

    Get PDF
    BACKGROUND: Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP, hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced tissue fibrosis. RESULTS: We identified a patient of African descent exhibiting unusual blood ACE kinetics with reduced relative hydrolysis of two synthetic ACE substrates (ZPHL/HHL ratio) suggestive of the ACE N domain center inactivation. Inhibition of blood ACE activity by anti-catalytic mAbs and ACE inhibitors and conformational fingerprint of blood ACE suggested overall conformational changes in the ACE molecule and sequencing identified Ser333Trp substitution in the N domain of ACE. In silico analysis demonstrated S333W localized in the S 1 pocket of the active site of the N domain with the bulky Trp adversely affecting binding of ACE substrates due to steric hindrance. Expression of mutant ACE (S333W) in CHO cells confirmed altered kinetic properties of mutant ACE and conformational changes in the N domain. Further, the S333W mutant displayed decreased ability (5-fold) to cleave the physiological substrate AcSDKP compared to wild-type ACE. Conclusions and Significance A novel Ser333Trp ACE mutation results in dramatic changes in ACE kinetic properties and lowered clearance of Ac-SDKP. Individuals with this mutation (likely with significantly increased levels of the hemoregulatory tetrapeptide in blood and tissues), may confer protection against fibrosis

    Sense-making strategies in explorative intelligence analysis of network evolutions

    Get PDF
    Visualising how social networks evolve is important in intelligence analysis in order to detect and monitor issues, such as emerging crime patterns or rapidly growing groups of offenders. It remains an open research question how this type of information should be presented for visual exploration. To get a sense of how users work with different types of visualisations, we evaluate a matrix and a node-link diagram in a controlled thinking aloud study. We describe the sense-making strategies that users adopted during explorative and realistic tasks. Thereby, we focus on the user behaviour in switching between the two visualisations and propose a set of nine strategies. Based on a qualitative and quantitative content analysis we show which visualisation supports which strategy better. We find that the two visualisations clearly support intelligence tasks and that for some tasks the combined use is more advantageous than the use of an individual visualisation

    Differential protein profiling as a potential multi-marker approach for TSE diagnosis

    Get PDF
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177This "proof of concept" study, examines the use of differential protein expression profiling using surface enhanced laser desorption and ionisationtime of flight mass spectrometry (SELDI-TOF) for the diagnosis of TSE disease. Spectral output from all proteins selectively captured from individual murine brain homogenate samples, are compared as "profiles" in groups of infected and non-infected animals. Differential protein expression between groups is thus highlighted and statistically significant protein "peaks" used to construct a panel of disease specific markers. Studies at both terminal stages of disease and throughout the time course of disease have shown a disease specific protein profile or "disease fingerprint" which could be used to distinguish between groups of TSE infected and uninfected animals at an early time point of disease. Results Our results show many differentially expressed proteins in diseased and control animals, some at early stages of disease. Three proteins identified by SELDI-TOF analysis were verified by immunohistochemistry in brain tissue sections. We demonstrate that by combining the most statistically significant changes in expression, a panel of markers can be constructed that can distinguish between TSE diseased and normal animals. Conclusion Differential protein expression profiling has the potential to be used for the detection of disease in TSE infected animals. Having established that a "training set" of potential markers can be constructed, more work would be required to further test the specificity and sensitivity of the assay in a "testing set". Based on these promising results, further studies are being performed using blood samples from infected sheep to assess the potential use of SELDI-TOF as a pre-mortem blood based diagnostic.https://doi.org/10.1186/1471-2334-9-1889pubpub

    Preserving and Using Germplasm and Dissociated Embryonic Cells for Conserving Caribbean and Pacific Coral

    Get PDF
    Coral reefs are experiencing unprecedented degradation due to human activities, and protecting specific reef habitats may not stop this decline, because the most serious threats are global (i.e., climate change), not local. However, ex situ preservation practices can provide safeguards for coral reef conservation. Specifically, modern advances in cryobiology and genome banking could secure existing species and genetic diversity until genotypes can be introduced into rehabilitated habitats. We assessed the feasibility of recovering viable sperm and embryonic cells post-thaw from two coral species, Acropora palmata and Fungia scutaria that have diffferent evolutionary histories, ecological niches and reproductive strategies. In vitro fertilization (IVF) of conspecific eggs using fresh (control) spermatozoa revealed high levels of fertilization (>90% in A. palmata; >84% in F. scutaria; P>0.05) that were unaffected by tested sperm concentrations. A solution of 10% dimethyl sulfoxide (DMSO) at cooling rates of 20 to 30°C/min most successfully cryopreserved both A. palmata and F. scutaria spermatozoa and allowed producing developing larvae in vitro. IVF success under these conditions was 65% in A. palmata and 53% in F. scutaria on particular nights; however, on subsequent nights, the same process resulted in little or no IVF success. Thus, the window for optimal freezing of high quality spermatozoa was short (∼5 h for one night each spawning cycle). Additionally, cryopreserved F. scutaria embryonic cells had∼50% post-thaw viability as measured by intact membranes. Thus, despite some differences between species, coral spermatozoa and embryonic cells are viable after low temperature (−196°C) storage, preservation and thawing. Based on these results, we have begun systematically banking coral spermatozoa and embryonic cells on a large-scale as a support approach for preserving existing bio- and genetic diversity found in reef systems

    TBVAC2020: Advancing tuberculosis vaccines from discovery to clinical development

    Get PDF
    TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal
    corecore