17 research outputs found

    Levels and Distribution of Heavy Metals in Weija Reservoir, Accra, Ghana

    Get PDF
    Reservoirs are normally subjected to various forms of degradation due to pollution arising from anthropogenic activities. Heavy metals are of particular concern because of their potential toxic effect and ability to bio-accumulate in aquatic ecosystems. Agricultural activities around the Weija reservoir and municipal waste leachate intrusion have been reported. Investigations were therefore conducted to determine the levels and distribution of heavy metals in the Weija reservoir. Specific heavy metals were determined in water, suspended particles, sediments and fish species using Flame Atomic Absorption Spectrophotometry. Mercury was analysed with a mercury analyser, which uses cold vapour. The result showed that the concentrations of metals were greater in sediment than the suspended particles and reservoir water; Cd, Cu, Ni, Pb and Zn were all below the chronic freshwater quality criteria for aquatic life. Iron (Fe) and Mn were the most abundant elements associated with the suspended solids, whiles Cd was the least. With the exception of Cu and Cd that were not detected in the fish species, the other metals were found at varying concentrations, but within acceptable thresholds. The concentrations of heavy metals in the various fish and prawn species were ranked in the following order: Parachanna obscura > Macrobrachium rosenbergii > Chrysicthys nigrodigitatus > Clarias batracus > Clarias gariepinus > Hemichromis faciatus > Sarotherodon melantheron. There were significant positive correlation between the following metals in water; Pb and Zn (r=0.66), Cr and As (r=0.52). Evidence from principal component analysis (PCA) suggested that two key source factors, characterised as related to mining and municipal solid wastes, underpinned heavy metal contamination in the Weija reservoir. Thus, illegal small-scale mining along the tributaries feeding the Weija reservoir affected the quality of water received in the reservoir

    Pesticides decrease bacterial diversity and abundance of irrigated rice fields

    Get PDF
    Bacteria play an important role in soil ecosystems and their activities are crucial in nutrient composition and recycling. Pesticides are extensively used in agriculture to control pests and improve yield. However, increased use of pesticides on agricultural lands results in soil contamination, which could have adverse effect on its bacterial communities. Here, we investigated the effect of pesticides commonly used on irrigated rice fields on bacterial abundance and diversity. Irrigated soil samples collected from unexposed, pesticide‐exposed, and residual exposure areas were cultured under aerobic and anaerobic conditions. DNA was extracted and analysed by 16S rRNA sequencing. The results showed overall decrease in bacterial abundance and diversity in areas exposed to pesticides. Operational taxonomic units of the genera Enterobacter, Aeromonas, Comamonas, Stenotrophomonas, Bordetella, and Staphylococcus decreased in areas exposed to pesticides. Conversely, Domibacillus, Acinetobacter, Pseudomonas, and Bacillus increased in abundance in pesticide‐exposed areas. Simpson and Shannon diversity indices and canonical correspondence analysis demonstrated a decrease in bacterial diversity and composition in areas exposed to pesticides. These results suggest bacteria genera unaffected by pesticides that could be further evaluated to identify species for bioremediation. Moreover, there is a need for alternative ways of improving agricultural productivity and to educate farmers to adopt innovative integrated pest management strategies to reduce deleterious impacts of pesticides on soil ecosystems.</p

    Interventions to reduce pesticide exposure from the agricultural sector in Africa: a workshop report

    Get PDF
    Despite the fact that several cases of unsafe pesticide use among farmers in different parts of Africa have been documented, there is limited evidence regarding which specific interventions are effective in reducing pesticide exposure and associated risks to human health and ecology. The overall goal of the African Pesticide Intervention Project (APsent) study is to better understand ongoing research and public health activities related to interventions in Africa through the implementation of suitable target-specific situations or use contexts. A systematic review of the scientific literature on pesticide intervention studies with a focus on Africa was conducted. This was followed by a qualitative survey among stakeholders involved in pesticide research or management in the African region to learn about barriers to and promoters of successful interventions. The project was concluded with an international workshop in November 2021, where a broad range of topics relevant to occupational and environmental health risks were discussed such as acute poisoning, street pesticides, switching to alternatives, or disposal of empty pesticide containers. Key areas of improvement identified were training on pesticide usage techniques, research on the effectiveness of interventions targeted at exposure reduction and/or behavioral changes, awareness raising, implementation of adequate policies, and enforcement of regulations and processes

    Environmental risk assessment of pesticides currently applied in Ghana

    No full text
    Registration of pesticides for use in Ghana is based on prospective environmental risk assessment (ERA) to assess the risks of future pesticide use on the environment. The present study evaluated whether pesticides currently used by Ghanaian farmers may harm the aquatic and terrestrial environment under day-to-day farm practice by performing a 1st tier ERA for terrestrial and aquatic environment and a 2nd tier ERA for the aquatic environment using existing scenarios and models. Results of the 1st tier risk assessment indicated that in the investigated regions in south Ghana, many pesticides might pose an acute risk to aquatic ecosystems adjacent to the treated fields while lambda cyhalothrin, chlorpyrifos, cypermethrin, dimethoate, mancozeb, carbendazim, sulphur, maneb and copper hydroxide may pose the highest chronic risks. Butachlor, dimethoate and carbendazim may pose acute risks to the terrestrial soil ecosystem, while glyphosate, chlorpyrifos, imidacloprid, dimethoate, mancozeb, carbendazim, maneb, copper hydroxide and cuprous oxide may pose the highest chronic risks. Many insecticides and some fungicides may pose acute risks to bees and terrestrial non-target arthropods. The 2nd tier acute aquatic risk assessment showed that most risks were substantiated using species sensitivity distribution (SSD). Actual pesticide use was a factor of 1.3–13 times higher than the recommended label instructions, indicating a general practice of overdosing. The case study shows that the PRIMET model in combination with the SSD concept may offer pesticide registration authorities in Ghana a means to assess environmental risks associated with pesticide usage in a user-friendly and cost-effective manner.</p

    Linking Macroinvertebrates and Physicochemical Parameters for Water Quality Assessment in the Lower Basin of the Volta River in Ghana

    No full text
    The health of the lower basin of the Volta River in Ghana was evaluated in January–February and May–June 2016 using physicochemical parameters and benthic macroinvertebrates sampled at 10 locations. Selected environmental variables were compared to accepted environmental water quality standard values where applicable. Principal component analysis (PCA) and redundancy analysis (RDA) were used to analyse the association between the benthic macroinvertebrates distribution and physicochemical variables. Pesticide concentrations were generally below the limit of detection 0.01 and 0.005 ”g/L for organophosphate/synthetic pyrethroid and organochlorines respectively. Nutrient levels were also generally low; however, significant differences existed between the values of physicochemical parameters at the different sampling sites and seasons (Monte Carlo permutation test; p = 0.002), as well as between the abundance of macroinvertebrates at the different sites and seasons (p = 0.002). The environmental variables dissolved oxygen (DO), phosphate, pH, substratum (p < 0.05), turbidity, conductivity, total dissolved solids, total solids and nitrate (0.05 < p < 0.10) significantly explained the variation in macroinvertebrate composition between sampling stations in the Volta River. Polypedilum fuscipenne, was positively correlated with turbidity and DO concentrations; Physa sp., Centroptilum sp., Centroptiloides sp., Phaon iridipennis and juvenile fish were positively correlated with nitrate concentration and pH and negatively correlated with turbidity and DO. Polluted sites were dominated by the snail Lymnaea glabra. This demonstrates that physicochemical parameters and macroinvertebrates could be applied to describe the water quality and improve the biomonitoring for water resources management and the environmental protection in the Lower Volta River
    corecore