829 research outputs found

    The National Ignition Facility Project

    Get PDF
    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

    Mapping submarine glacial landforms using acoustic methods

    Get PDF
    The mapping of submarine glacial landforms is largely dependent on marine geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full global coverage of seafloor mapping, equivalent to that which exists for the Earth's land surface, has, to date, only been achieved by deriving bathymetry from radar altimeters on satellites such as GeoSat and ERS-1 (Smith & Sandwell 1997). The horizontal resolution is limited by the footprint of the satellite sensors and the need to average out local wave and wind effects, resulting in a cell size of about 15 km (Sandwell et al. 2001). A further problem in high latitudes is that the altimeter data are extensively contaminated by the presence of sea ice, which degrades the derived bathymetry (McAdoo & Laxon 1997). Consequently, the satellite altimeter method alone is not suitable for mapping submarine glacial landforms, given that their morphological characterization usually requires a much finer level of detail. Acoustic mapping methods based on marine echo-sounding principles are currently the most widely used techniques for mapping submarine glacial landforms because they are capable of mapping at a much higher resolution

    Subglacial Water Flow Over an Antarctic Palaeo‐Ice Stream Bed

    Get PDF
    The subglacial hydrological system exerts a critical control on the dynamic behavior of the overlying ice because its configuration affects the degree of basal lubrication between the ice and the bed. Yet, this component of the glaciological system is notoriously hard to access and observe, particularly over timescales longer than the satellite era. In Antarctica, abundant evidence for past subglacial water flow over former ice-sheet beds exists around the peripheries of the ice sheet including networks of huge channels carved into bedrock (now submarine) on the Pacific margin of West Antarctica. Here, we combine detailed bathymetric investigations of a channel system in Marguerite Trough, a major palaeo-ice stream bed, with numerical hydrological modeling to explore subglacial water accumulation, routing and potential for erosion over decadal-centennial timescales. Detailed channel morphologies from remotely operated vehicle surveys indicate multiple stages of localized incision, and the occurrence of potholes, some gigantic in scale, suggests incision by turbulent water carrying a significant bedload. Further, the modeling indicates that subglacial water is available during deglaciation and was likely released in episodic drainage events, from subglacial lakes, varying in magnitude over time. Our observations support previous assertions that these huge bedrock channel systems were incised over multiple glacial cycles through episodic subglacial lake drainage events; however, here we present a viable pattern for subglacial drainage at times when the ice sheet existed over the continental shelf and was capable of continuing to erode the bedrock substrate

    Sedimentary processes on the continental slope off Kvitøya and Albertini troughs north of Nordaustlandet, Svalbard – The importance of structural-geological setting in trough-mouth fan development

    Get PDF
    New marine-geophysical data were analyzed to investigate the sedimentary processes operating on the continental slope north of Nordaustlandet, Svalbard. Kvitøya Trough terminates in a trough-mouth fan (TMF) on the slope, whereas Albertini Trough incises the shelf edge and a TMF is notably absent. Instead, the continental slope beyond Albertini Trough is dominated by thick, acoustically stratified units likely formed by down-slope and along-slope sedimentological processes combined. The morphological and sedimentological differences between Albertini and Kvitøya troughs may partly be due to the larger dimensions of Kvitøya Trough and its associated glacial catchment area relative to Albertini, suggesting that the transport of a larger volume of glacigenic sediments potentially was a contributing factor in building Kvitøya TMF. By contrast, the downfaulted bedrock below outer Albertini Trough provided larger accommodation space for glacigenic sediments which accumulated in an outer-shelf basin, highlighting the importance of the structural-geological setting in TMF development. Debris-flow deposits and/or channel-levee deposits on the lower continental slope and rise off Kvitøya Trough indicate bypassing of glacigenic sediments from the shelf to the deep ocean, a process that is likely a result of locally steep slope gradients (< 9°). The volume of the Kvitøya TMF is smaller than TMFs along the western Svalbard margin, which may be linked to the more erosion-resistant bedrock of the northern margin and/or the comparatively small drainage basin of Kvitøya Trough compared to drainage basins of ice streams that drained westwards from Barents Sea. In addition, the Kvitøya TMF is incised by gullies indicating that they formed after Last Glacial Maximum (LGM) while larger tributary canyons flanking the Kvitøya TMF likely have developed during a longer time span. High seafloor backscatter values in the tributary canyons and gullies are interpreted as coarse-grained deposits that lead down-slope to debris-flow deposits, suggesting an origin for the tributary canyons and gullies through incision by gravity flows of sediment-laden meltwater during and/or after deglaciation

    Spatial gradients in the cosmological constant

    Get PDF
    It is possible that there may be differences in the fundamental physical parameters from one side of the observed universe to the other. I show that the cosmological constant is likely to be the most sensitive of the physical parameters to possible spatial variation, because a small variation in any of the other parameters produces a huge variation of the cosmological constant. It therefore provides a very powerful {\em indirect} evidence against spatial gradients or temporal variation in the other fundamental physical parameters, at least 40 orders of magnitude more powerful than direct experimental constraints. Moreover, a gradient may potentially appear in theories where the variability of the cosmological constant is connected to an anthropic selection mechanism, invoked to explain the smallness of this parameter. In the Hubble damping mechanism for anthropic selection, I calculate the possible gradient. While this mechanism demonstrates the existence of this effect, it is too small to be seen experimentally, except possibly if inflation happens around the Planck scale.Comment: 12 page

    Situationally edited empathy: an effect of socio-economic structure on individual choice

    Get PDF
    Criminological theory still operates with deficient models of the offender as agent, and of social influences on the agent’s decision-making process. This paper takes one ‘emotion’, empathy, which is theoretically of considerable importance in influencing the choices made by agents; particularly those involving criminal or otherwise harmful action. Using a framework not of rational action, but of ‘rationalised action’, the paper considers some of the effects on individual psychology of social, economic, political and cultural structure. It is suggested that the climate-setting effects of these structures promote normative definitions of social situations which allow unempathic, harmful action to be rationalised through the situational editing of empathy. The ‘crime is normal’ argument can therefore be extended to include the recognition that the uncompassionate state of mind of the criminal actor is a reflection of the self-interested values which govern non-criminal action in wider society

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
    corecore