26 research outputs found
Why Did Memetics Fail? Comparative Case Study
Although the theory of memetics appeared highly promising at the beginning, it is no longer considered a scientific theory among contemporary evolutionary scholars. This study aims to compare the genealogy of memetics with the historically more successful gene-culture coevolution theory. This comparison is made in order to determine the constraints that emerged during the internal development of the memetics theory that could bias memeticists to work on the ontology of meme units as opposed to hypotheses testing, which was adopted by the gene-culture scholars. I trace this problem back to the diachronic development of memetics to its origin in the gene-centered anti-group-selectionist argument of George C. Williams and Richard Dawkins. The strict adoption of this argument predisposed memeticists with the a priori idea that there is no evolution without discrete units of selection, which in turn, made them dependent on the principal separation of biological and memetic fitness. This separation thus prevented memeticists from accepting an adaptationist view of culture which, on the contrary, allowed gene-culture theorists to attract more scientists to test the hypotheses, creating the historical success of the gene-culture coevolution theory
Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System
The Neptune Odyssey mission concept is a Flagship-class orbiter and atmospheric probe to the Neptune-Triton system. This bold mission of exploration would orbit an ice-giant planet to study the planet, its rings, small satellites, space environment, and the planet-sized moon Triton. Triton is a captured dwarf planet from the Kuiper Belt, twin of Pluto, and likely ocean world. Odyssey addresses Neptune system-level science, with equal priorities placed on Neptune, its rings, moons, space environment, and Triton. Between Uranus and Neptune, the latter is unique in providing simultaneous access to both an ice giant and a Kuiper Belt dwarf planet. The spacecraft - in a class equivalent to the NASA/ESA/ASI Cassini spacecraft - would launch by 2031 on a Space Launch System or equivalent launch vehicle and utilize a Jupiter gravity assist for a 12 yr cruise to Neptune and a 4 yr prime orbital mission; alternatively a launch after 2031 would have a 16 yr direct-to-Neptune cruise phase. Our solution provides annual launch opportunities and allows for an easy upgrade to the shorter (12 yr) cruise. Odyssey would orbit Neptune retrograde (prograde with respect to Triton), using the moon's gravity to shape the orbital tour and allow coverage of Triton, Neptune, and the space environment. The atmospheric entry probe would descend in ~37 minutes to the 10 bar pressure level in Neptune's atmosphere just before Odyssey's orbit-insertion engine burn. Odyssey's mission would end by conducting a Cassini-like "Grand Finale,"passing inside the rings and ultimately taking a final great plunge into Neptune's atmosphere
Mexico, 1946-73.
"Much of the material is adapted from the record compiled by Facts on File."Mode of access: Internet