69 research outputs found

    Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters

    Get PDF
    The aspartate-derived amino-acid pathway from plants is well suited for analysing the function of the allosteric network of interactions in branched pathways. For this purpose, a detailed kinetic model of the system in the plant model Arabidopsis was constructed on the basis of in vitro kinetic measurements. The data, assembled into a mathematical model, reproduce in vivo measurements and also provide non-intuitive predictions. A crucial result is the identification of allosteric interactions whose function is not to couple demand and supply but to maintain a high independence between fluxes in competing pathways. In addition, the model shows that enzyme isoforms are not functionally redundant, because they contribute unequally to the flux and its regulation. Another result is the identification of the threonine concentration as the most sensitive variable in the system, suggesting a regulatory role for threonine at a higher level of integration

    The logic of kinetic regulation in the thioredoxin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system.</p> <p>Results</p> <p>Analysis of a realistic computational model of the <it>Escherichia coli </it>thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models.</p> <p>Conclusions</p> <p>Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.</p

    Noise Management by Molecular Networks

    Get PDF
    Fluctuations in the copy number of key regulatory macromolecules (“noise”) may cause physiological heterogeneity in populations of (isogenic) cells. The kinetics of processes and their wiring in molecular networks can modulate this molecular noise. Here we present a theoretical framework to study the principles of noise management by the molecular networks in living cells. The theory makes use of the natural, hierarchical organization of those networks and makes their noise management more understandable in terms of network structure. Principles governing noise management by ultrasensitive systems, signaling cascades, gene networks and feedback circuitry are discovered using this approach. For a few frequently occurring network motifs we show how they manage noise. We derive simple and intuitive equations for noise in molecule copy numbers as a determinant of physiological heterogeneity. We show how noise levels and signal sensitivity can be set independently in molecular networks, but often changes in signal sensitivity affect noise propagation. Using theory and simulations, we show that negative feedback can both enhance and reduce noise. We identify a trade-off; noise reduction in one molecular intermediate by negative feedback is at the expense of increased noise in the levels of other molecules along the feedback loop. The reactants of the processes that are strongly (cooperatively) regulated, so as to allow for negative feedback with a high strength, will display enhanced noise

    A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    Get PDF
    BACKGROUND: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format have been proposed as a suitable alternative with fewer parameters. RESULTS: In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC) simulations. CONCLUSION: The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only. Addition of steady state perturbation of enzyme activities solved this problem

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Robustness and autonomy in biological systems: how regulatory mechanisms enable functional integration, complexity and minimal cognition through the action of second-order control constraints

    Get PDF
    Living systems employ several mechanisms and behaviors to achieve robustness and maintain themselves under changing internal and external conditions. Regulation stands out from them as a specific form of higher-order control, exerted over the basic regime responsible for the production and maintenance of the organism, and provides the system with the capacity to act on its own constitutive dynamics. It consists in the capability to selectively shift between different available regimes of self-production and self-maintenance in response to specific signals and perturbations, due to the action of a dedicated subsystem which is operationally distinct from the regulated ones. The role of regulation, however, is not exhausted by its contribution to maintain a living system’s viability. While enhancing robustness, regulatory mechanisms play a fundamental role in the realization of an autonomous biological organization. Specifically, they are at the basis of the remarkable integration of biological systems, insofar as they coordinate and modulate the activity of distinct functional subsystems. Moreover, by implementing complex and hierarchically organized control architectures, they allow for an increase in structural and organizational complexity while minimizing fragility. Finally, they endow living systems, from their most basic unicellular instances, with the capability to control their own internal dynamics to adaptively respond to specific features of their interaction with the environment, thus providing the basis for the emergence of minimal forms of cognition

    Trusting the Messenger: Public and Elite Confidence in the SA Print Media.

    No full text
    Lettere En WysbegeertePolitieke WetenskapPlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]
    corecore