21 research outputs found

    Seasonal dynamics and exports of elements from a first‐order stream to a large inland lake in Michigan

    Full text link
    Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3−, PO43−, SO42−). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149221/1/hyp13416.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149221/2/hyp13416_am.pd

    Fostering effective and sustainable scientific collaboration and knowledge exchange: a workshop-based approach to establish a national ecological observatory network (NEON) domain-specific user group

    Get PDF
    The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA’s National Ecological Observatory Network’s (NEON’s) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON’s first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG’s kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A Surface Runoff Model For Central New York Agricultural Fields

    Full text link
    Nonpoint source (NPS) pollution continues to be the leading cause of US surface water degradation, especially in agricultural areas. In humid regions where variable source area (VSA) hydrology dominates storm runoff, NPS pollution is generated where VSAs coincide with polluting activities. Mapping storm runoff generating areas could allow for more precise and informed targeting of NPS pollution mitigation practices in agricultural landscapes. Previous efforts to do this have relied on simulation models or potentially over-simplifying assumptions about the interactions between rainfall and landscape features that generate storm runoff. Here we used direct measures to empirically derive relationships between topographic wetness indices (TWI) and soil volumetric water content (VWC) and rainfall frequencies to develop runoff risk maps. We surveyed VWC across five agricultural fields in central New York over two years (2012-2014) to develop runoff probability maps based on a soil topographic index (STI). We assumed that the threshold for runoff occurred when the combination of antecedent soil water and rainfall were sufficient to saturate the soil. The linear relationship between VWC and STI was strong for all seasons sampled (spring, summer, autumn). All sites followed a logistic relationship between probability of runoff and STI, although the relative risks between sites shifted from season to season. This work suggests that by developing and using runoff risk maps, the risk of NPS pollution in runoff can be reduced by 70-80% by taking 10% of the agricultural land out of production or halting polluting activities in high risk areas. Reducing the risk of polluted runoff from VSAs depends on the management decisions made at each field, whether the focus is on removing a consistent amount of land from production or setting a threshold for acceptable runoff probability. This analysis can be used to determine the optimal placement of conservation easements or management practices for the protection of water quality

    Water Movement and Connectivity in a Forested Glacial Drift Watershed

    Full text link
    Water movement through the landscape to streams provides a fundamental linkage between terrestrial and aquatic environments in headwater systems. Headwater streams, which are the smallest and most abundant streams, are critical components of drainage systems, connecting important terrestrial and aquatic biogeochemical cycles and influencing the nutrient dynamics of downstream ecosystems. Given the importance of water presence and movement as a driver of biogeochemical transformations and the transport of material from terrestrial to aquatic ecosystems, the primary goal of this research was to quantify the distribution across and movement of water and other elements through a forested watershed to a headwater stream and ultimately to an inland lake in the glacial drift landscape of northern Michigan, U.S.A. To investigate the temporal dynamics and spatial patterns of water across the watershed and in Honeysuckle Creek, stream discharge, shallow groundwater levels, soil moisture, and water chemistry were measured from 2015–2017. Along the stream, surface flow was seasonal in the main stem and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger than annual mean discharge. Topography and soil characteristics strongly influence water and dissolved matter movement through the landscape. Water presence across the watershed was highly variable with perennial soil saturation and shallow groundwater within 10 cm of the surface at the lowest landscape positions, low soil moisture and nonexistent groundwater in upland outwash ecosystems, and a mixture of these conditions in the heterogeneous till parent material ecosystems of middle landscape positions. Shallow groundwater was the primary source of water to the headwater stream throughout the year; originating from snowmelt in the spring and shifting to recent precipitation in summer and autumn seasons. The riparian areas and the outwash-lake plain wetland likely have a much stronger influence on stream chemistry and discharge than the upland landscape units, due to the perennial connections between shallow groundwater from these wetland areas and surface water

    Characterizing Groundwater Chemistry and Recharge in the Critical Zone of an Agricultural Claypan Watershed

    No full text
    Soils with low permeability horizons (e.g., claypans) are vulnerable to loss of nutrients through surface runoff along with preferential flow paths through the restrictive horizon to deeper aquifers. Partitioning between these hydrologic pathways is important to determine transport processes and develop strategies that mitigate stream contamination. Our objective was to investigate controls on groundwater chemistry and recharge pathways using natural geochemical tracers in the Goodwater Creek Experimental Watershed in Missouri, U.S. Groundwater samples were collected during 2011–2017 from 32 piezometers ranging from 0.13 to 16 m deep along with stream water and precipitation. Diagnostic tools of mixing models indicated that chemistry of perched water directly above the claypan and shallow groundwater immediately below was controlled primarily by chemical equilibrium. Five solutes behaved conservatively in most deep piezometers (\u3e5 m), reflecting mixing of two end members and the lack of significant denitrification processes. End member mixing analysis showed that the deeper groundwater originated primarily from groundwater at similar depths, often upslope or from strata directly above, with small contributions from perched water, highlighting the importance of both horizontal and vertical preferential recharge pathways. Vertical pathways are likely dictated by soil heterogeneity throughout the critical zone and do not occur synchronously with precipitation events or simultaneously over all piezometer locations. The complex recharge pathways provide stochastic conduits for nitrate transport to deeper aquifers where legacy stores accumulate, presenting a significant challenge for water quality management in watersheds with restrictive soil horizons and spatially and temporally heterogeneous preferential flow pathways, including the Mississippi River Basin

    Impact of West Nile Virus and Other Mortality Factors on American White Pelicans at Breeding Colonies in the Northern Plains of North America

    Get PDF
    American white pelicans (Pelecanus erythrorhynchos) are colonial-nesting birds and their breeding sites are concentrated in a few small areas, making this species especially vulnerable to factors that can influence productivity, such as disease, disturbance, predation, weather events and loss of nesting habitat. Nearly half of the American white pelican population breeds at four colonies in the northern plains: Chase Lake National Wildlife Refuge (NWR) in North Dakota, Bitter Lake (Waubay NWR) in South Dakota, Medicine Lake NWR in Montana, and Marsh Lake in Minnesota. Thus, sustained productivity at these colonies is crucial to the health of the entire species. During the latter half of the 2002 and 2003 breeding seasons, unusually high mortality of pelican chicks was observed at these colonies. West Nile virus (WNv) was identified as one source of these losses. In 2004–2007 we monitored three major colonies in the northern plains to assess mortality of chicks during the late breeding season.We documented severe weather events, disturbance, and WNv as factors contributing to chick mortality. Before WNv arrived in the region in 2002, chick mortality after mid-July was 64%, and then jumped to as high as 44% in the years since WNv arrived. WNv kills older chicks that are no longer vulnerable to other common mortality factors (e.g., severe weather, gull predation) and typically would have survived to fledge; thus WNv appears to be an additive mortality factor. Persistence of lower productivity at American white pelican colonies in the northern plains might reduce the adult breeding population of this species in the region

    The Identification, Mapping, and Management of Seasonal Ponds in Forests of the Great Lakes Region

    No full text
    Seasonal ponds are small, isolated wetlands with variable hydrology, often occurring embedded in upland forests, which provide habitat for amphibians and invertebrates uniquely adapted to fishless waters. Seasonal ponds are challenging to identify due to their small size, ephemeral hydrology, diverse vegetation, and occurrence across a range of settings, yet in order to inform their conservation and management, it is essential to understand their distribution and how management impacts them. We conducted a systematic review to define and quantify attributes of seasonal ponds, summarize mapping and inventory methods, and synthesize forest harvesting impacts on ponds in the western Great Lakes and northeastern United States. Definitions of seasonal ponds differ regionally and for scientific vs. regulatory purposes; the necessity of documenting pond-dependent indicator species (e.g., fairy shrimp) is one of the most vexing inconsistencies. Seasonal ponds are most effectively mapped in the spring, using a combination of aerial photographs or radar imagery and topographic information, especially in settings with small ponds or heavy canopies. Combining these mapping efforts with carefully stratified field validation is essential for developing a regional inventory of seasonal ponds. Most guidelines intended to reduce impacts of forest harvesting on pond ecosystems rely on buffers, which most effectively minimize physical or biological impacts when most lightly treated, although some impacts (particularly water levels) appear unavoidable when any harvesting occurs adjacent to seasonal ponds. Overall, distinct physical and biological impacts of harvesting differ in magnitude and direction, though most appear to subside over multi-decadal timescales

    Fifth metacarpal neck fractures treated with soft wrap/buddy taping compared to reduction and casting: results of a prospective, multicenter, randomized trial

    No full text
    The majority of fifth metacarpal neck fractures (boxers fracture) are treated conservatively without surgery. The purpose of this prospective, randomized, multicenter trial was to determine if the outcomes of soft wrap and buddy taping (SW) was noninferior to reduction and cast (RC) in boxer's fracture with palmar angulation ≀70° and no rotational deformity
    corecore