89 research outputs found

    Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans

    Get PDF
    In the present study, we investigated changes in regional cerebral blood flow (rCBF) in humans during the progression from relaxed wakefulness through slow wave sleep (SWS). These changes were examined as a function of spindle (12-15 Hz) and delta (1.5-4.0 Hz) electroencephalographic (EEG) activity of SWS. rCBF was studied with positron emission tomography (PET) using the H215O bolus method. A maximum of six 60 sec scans were performed per subject during periods of wakefulness and stages 1-4 of SWS, as determined by on-line EEG monitoring. Spectral analysis was performed off-line on the EEG epochs corresponding to the scans for computation of activity in specific frequency bands. The relationship between EEG frequency band activity and normalized rCBF was determined by means of a voxel-by-voxel analysis of covariance. delta activity covaried negatively with rCBF most markedly in the thalamus and also in the brainstem reticular formation, cerebellum, anterior cingulate, and orbitofrontal cortex. After the effect of delta was removed, a significant negative covariation between spindle activity and the residual rCBF was evident in the medial thalamus. These negative covariations may reflect the disfacilitation and active inhibition of thalamocortical relay neurons in association with delta and spindles, as well as the neural substrates underlying the progressive attenuation of sensory awareness, motor responsiveness, and arousal that occur during SWS. delta activity covaried positively with rCBF in the visual and auditory cortex, possibly reflecting processes of dream-like mentation purported to occur during SW

    Testing Beam-Induced Quench Levels of LHC Superconducting Magnets

    Full text link
    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electro-thermal models, thus allowing to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for Run 2.Comment: 19 page

    Multisource and multitemporal data fusion in remote sensing:A comprehensive review of the state of the art

    Get PDF
    The recent, sharp increase in the availability of data captured by different sensors, combined with their considerable heterogeneity, poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary data sets, however, opens up the possibility of utilizing multimodal data sets in a joint manner to further improve the performance of the processing approaches with respect to applications at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several

    Identification, Design and Biological Evaluation of Bisaryl Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2)

    Get PDF
    A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure-activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC(50) against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc(1), and studies to determine the potential advantage of this dual-targeting effect are in progress

    AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

    Get PDF
    The AWAKE Collaboration has been formed in order to demonstrate proton-driven plasma wakefield acceleration for the first time. This acceleration technique could lead to future colliders of high energy but of a much reduced length when compared to proposed linear accelerators. The CERN SPS proton beam in the CNGS facility will be injected into a 10 m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20 MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial three-four years experimental program. The experiment will inform future larger-scale tests of proton-driven plasma wakefield acceleration and applications to high energy colliders

    AWAKE, the advanced proton driven plasma wakefield acceleration experiment at CERN

    Get PDF
    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world׳s first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented

    AWAKE: A proton-driven plasma wakefield acceleration experiment at CERN

    Get PDF
    The AWAKE Collaboration has been formed in order to demonstrate proton-driven plasma wakefield acceleration for the first time. This acceleration technique could lead to future colliders of high energy but of a much reduced length when compared to proposed linear accelerators. The CERN SPS proton beam in the CNGS facility will be injected into a 10 m plasma cell where the long proton bunches will be modulated into significantly shorter micro bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20 MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial three-four years experimental program. The experiment will inform future larger-scale tests of proton-driven plasma wakefield acceleration and applications to high energy colliders.info:eu-repo/semantics/publishedVersio

    Path to AWAKE : evolution of the concept

    Get PDF
    This paper describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability - a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of the AWAKE design and construction status as presented in this conference is given in Gschwendtner et al. [1]
    corecore