105 research outputs found

    Het einde van hart- en vaatziekten nabij: Feit of fictie?

    Get PDF

    Type 2 Diabetes Mellitus: New Genetic Insights will Lead to New Therapeutics

    Get PDF
    Type 2 diabetes is a disorder of dysregulated glucose homeostasis. Normal glucose homeostasis is a complex process involving several interacting mechanisms, such as insulin secretion, insulin sensitivity, glucose production, and glucose uptake. The dysregulation of one or more of these mechanisms due to environmental and/or genetic factors, can lead to a defective glucose homeostasis. Hyperglycemia is managed by augmenting insulin secretion and/or interaction with hepatic glucose production, as well as by decreasing dietary caloric intake and raising glucose metabolism through exercise. Although these interventions can delay disease progression and correct blood glucose levels, they are not able to cure the disease or stop its progression entirely. Better management of type 2 diabetes is sorely needed. Advances in genotyping techniques and the availability of large patient cohorts have made it possible to identify common genetic variants associated with type 2 diabetes through genome-wide association studies (GWAS). So far, genetic variants on 19 loci have been identified. Most of these loci contain or lie close to genes that were not previously linked to diabetes and they may thus harbor targets for new drugs. It is also hoped that further genetic studies will pave the way for predictive genetic screening. The newly discovered type 2 diabetes genes can be classified based on their presumed molecular function, and we discuss the relation between these gene classes and current treatments. We go on to consider whether the new genes provide opportunities for developing alternative drug therapies

    Identification of TUB as a novel candidate gene influencing body weight in humans

    Get PDF
    Previously, we identified a locus on 11p influencing obesity in families with type 2 diabetes. Based on mouse studies, we selected TUB as a functional candidate gene and performed association studies to determine whether this controls obesity. We analyzed the genotypes of 13 single nucleotide polymorphisms (SNPs) around TUB in 492 unrelated type 2 diabetic patients with known BMI values. One SNP (rs1528133) was found to have a significant effect on BMI (1.54 kg/m(2), P = 0.006). This association was confirmed in a population enriched for type 2 diabetes, using 750 individuals who were not selected for type 2 diabetes. Two SNPs in linkage disequilibrium with rs1528133 and mapping to the 3' end of TUB, rs2272382, and rs2272383 also affected BMI by 1.3 kg/m2 (P = 0.016 and P = 0.010, respectively). Combined analysis confirmed this association (P = 0.005 and P = 0.002, respectively). Moreover, comparing 349 obese subjects (BMI >30 kg/m(2)) from the combined cohort with 289 normal subjects (BMI <25 kg/m(2)) revealed that the protective alleles have a lower frequency in obese subjects (odds ratio 1.32 [95% CI 1.04-1.67], P = 0.022). Altogether, data from the tubby mouse as well as these data suggest that TUB could be an important factor in controlling the central regulation of body weight in humans

    The ATF6-Met [67] Val substitution is associated with increased plasma cholesterol levels

    Get PDF
    Objective— Activating transcription factor 6 (ATF6) is a sensor of the endoplasmic reticulum stress response and regulates expression of several key lipogenic genes. We used a 2-stage design to investigate whether ATF6 polymorphisms are associated with lipids in subjects at increased risk for cardiovascular disease (CVD). Methods and Results— In stage 1, 13 tag-SNPs were tested for association in Dutch samples ascertained for familial combined hyperlipidemia (FCHL) or increased risk for CVD (CVR). In stage 2, we further investigated the SNP with the strongest association from stage 1, a Methionine/Valine substitution at amino-acid 67, in Finnish FCHL families and in subjects with CVR from METSIM, a Finnish population-based cohort. The combined analysis of both stages reached region-wide significance (P=9x10–4), but this association was not seen in the entire METSIM cohort. Our functional analysis demonstrated that Valine at position 67 augments ATF6 protein and its targets Grp78 and Grp94 as well as increases luciferase expression through Grp78 promoter. Conclusions— A common nonsynonymous variant in ATF6 increases ATF6 protein levels and is associated with cholesterol levels in subjects at increased risk for CVD, but this association was not seen in a population-based cohort. Further replication is needed to confirm the role of this variant in lipids. We report the association of the ATF6-methionine [67]valine amino-acid substitution with plasma cholesterol levels. Association analyses in 2674 subjects and functional data suggest that the ATF6 gene may influence cholesterol levels in subjects at increased risk to develop cardiovascular disease

    Предсказание торсионных углов в аминокислотных последовательностях белков на основе байесовской процедуры распознавания на цепях Маркова

    Get PDF
    Запропоновано процедуру розпізнавання торсіонних кутів, утворених C^α атомами чотирьох сусідніх амінокислотних залишків. Отримана послідовність кутів використовується для побудови просторової структури білка на решітці Z³.Torsion angles defined on C^α atoms of four neighbouring residues are predicted using Bayesian pattern recognition procedure on non-stationary Markov chains. The predicted sequence of torsion angles is used for constructing protein 3-dimensional structure on Z³

    Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice

    Get PDF
    BACKGROUND: Smoothelins are actin-binding proteins that are abundantly expressed in healthy visceral (smoothelin-A) and vascular (smoothelin-B) smooth muscle. Their expression is strongly associated with the contractile phenotype of smooth muscle cells. Analysis of mice lacking both smoothelins (Smtn-A/B(-/-) mice) previously revealed a critical role for smoothelin-A in intestinal smooth muscle contraction. Here, we report on the generation and cardiovascular phenotype of mice lacking only smoothelin-B (Smtn-B(-/-)). METHODS AND RESULTS: Myograph studies revealed that the contractile capacity of the saphenous and femoral arteries was strongly reduced in Smtn-B(-/-) mice, regardless of the contractile agonist used to trigger contraction. Arteries from Smtn-A/B(-/-) compound mutant mice exhibited a similar contractile deficit. Smtn-B(-/-) arteries had a normal architecture and expressed normal levels of other smooth muscle cell-specific genes, including smooth muscle myosin heavy chain, alpha-smooth muscle actin, and smooth muscle-calponin. Decreased contractility of Smtn-B(-/-) arteries was paradoxically accompanied by increased mean arterial pressure (20 mm Hg) and concomitant cardiac hypertrophy despite normal parasympathetic and sympathetic tone in Smtn-B(-/-) mice. Magnetic resonance imaging experiments revealed that cardiac function was not changed, whereas distension of the proximal aorta during the cardiac cycle was increased in Smtn-B(-/-) mice. However, isobaric pulse wave velocity and pulse pressure measurements indicated normal aortic distensibility. CONCLUSIONS: Collectively, our results identify smoothelins as key determinants of arterial smooth muscle contractility and cardiovascular performance. Studies on mutations in the Smtn gene or alterations in smoothelin levels in connection to hypertension in humans are warranted

    Towards a standardised informed consent procedure for live donor nephrectomy: The PRINCE (Process of Informed Consent Evaluation) project-study protocol for a nationwide prospective cohort study

    Get PDF
    Introduction: Informed consent is mandatory for all (surgical) procedures, but it is even more important when it comes to living kidney donors undergoing surgery for the benefit of others. Donor education, leading to informed consent, needs to be carried out according to certain standards. Informed consent procedures for live donor nephrectomy vary per centre, and even per individual healthcare professional. The basis for a standardised, uniform surgical informed consent procedure for live donor nephrectomy can be created by assessing what information donors need to hear to prepare them for the operation and convalescence. Methods and analysis: The PRINCE (Process of In formed Consent Evaluation) project is a prospective, multicentre cohort study, to be carried out in all eight Dutch kidney transplant centres. Donor knowledge of the procedure and postoperative course will be evaluated by means of pop quizzes. A baseline cohort (prior to receiving any information from a member of the transplant team in one of the transplant centres) will be compared with a control group, the members of which receive the pop quiz on the day of admission for donor nephrectomy. Donor satisfaction will be evaluated for all donors who completed the admission pop-quiz. The primary end point is donor knowledge. In addition, those elements that have to be included in the standardized format informed consent procedure will be identified. Secondary end points are donor satisfaction, current informed consent practices in the different centres (eg, how many visits, which personnel, what kind of information is di
    corecore