9 research outputs found

    Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal

    Get PDF
    Background : Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. Methodology/Principal Findings : The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. Conclusions/Significance : The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution

    Remote ischemic preconditioning does not affect the release of humoral factors in propofol-anesthetized cardiac surgery patients : a secondary analysis of the RIPHeart study

    Get PDF
    In contrast to several smaller studies, which demonstrate that remote ischemic preconditioning (RIPC) reduces myocardial injury in patients that undergo cardiovascular surgery, the RIPHeart study failed to demonstrate beneficial effects of troponin release and clinical outcome in propofol-anesthetized cardiac surgery patients. Therefore, we addressed the potential biochemical mechanisms triggered by RIPC. This is a predefined prospective sub-analysis of the randomized and controlled RIPHeart study in cardiac surgery patients (n = 40) that was recently published. Blood samples were drawn from patients prior to surgery, after RIPC of four cycles of 5 min arm ischemia/5 min reperfusion (n = 19) and the sham (n = 21) procedure, after connection to cardiopulmonary bypass (CPB), at the end of surgery, 24 h postoperatively, and 48 h postoperatively for the measurement of troponin T, macrophage migration inhibitory factor (MIF), stromal cell-derived factor 1 (CXCL12), IL-6, CXCL8, and IL-10. After RIPC, right atrial tissue samples were taken for the measurement of extracellular-signal regulated kinase (ERK1/2), protein kinase B (AKT), Glycogen synthase kinase 3 (GSK-3β), protein kinase C (PKCε), and MIF content. RIPC did not significantly reduce the troponin release when compared with the sham procedure. MIF serum levels intraoperatively increased, peaking at intensive care unit (ICU) admission (with an increase of 48.04%, p = 0.164 in RIPC; and 69.64%, p = 0.023 over the baseline in the sham procedure), and decreased back to the baseline 24 h after surgery, with no differences between the groups. In the right atrial tissue, MIF content decreased after RIPC (1.040 ± 1.032 Arbitrary units [au] in RIPC vs. 2.028 ± 1.631 [au] in the sham procedure, p < 0.05). CXCL12 serum levels increased significantly over the baseline at the end of surgery, with no differences between the groups. ERK1/2, AKT, GSK-3β, and PKCɛ phosphorylation in the right atrial samples were no different between the groups. No difference was found in IL-6, CXCL8, and IL10 serum levels between the groups. In this cohort of cardiac surgery patients that received propofol anesthesia, we could not show a release of potential mediators of signaling, nor an effect on the inflammatory response, nor an activation of well-established protein kinases after RIPC. Based on these data, we cannot exclude that confounding factors, such as propofol, may have interfered with RIPC

    The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways.

    No full text
    The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology

    Intensive recreational athletes in the prospective multinational ICD Sports Safety Registry : results from the European cohort

    No full text
    Background: In the ICD Sports Safety Registry, death, arrhythmia- or shock-related physical injury did not occur in athletes who continue competitive sports after implantable cardioverter-defibrillator (ICD) implantation. However, data from non-competitive ICD recipients is lacking. This report describes arrhythmic events and lead performance in intensive recreational athletes with ICDs enrolled in the European recreational arm of the Registry, and compares their outcome with those of the competitive athletes in the Registry. Methods: The Registry recruited 317 competitive athletes >= 18 years old, receiving an ICD for primary or secondary prevention (234 US; 83 non-US). In Europe, Israel and Australia only, an additional cohort of 80 'auto-competitive' recreational athletes was also included, engaged in intense physical activity on a regular basis (>= 2x/week and/or >= 2 h/week) with the explicit aim to improve their physical performance limits. Athletes were followed for a median of 44 and 49 months, respectively. ICD shock data and clinical outcomes were adjudicated by three electrophysiologists. Results: Compared with competitive athletes, recreational athletes were older (median 44 vs. 37 years; p = 0.0004), more frequently men (79% vs. 68%; p = 0.06), with less idiopathic ventricular fibrillation or catecholaminergic polymorphic ventricular tachycardia (1.3% vs. 15.4%), less congenital heart disease (1.3% vs. 6.9%) and more arrhythmogenic right ventricular cardiomyopathy (23.8% vs. 13.6%) (p < 0.001). They more often had a prophylactic ICD implant (51.4% vs. 26.9%; p < 0.0001) or were given a beta-blocker (95% vs. 65%; p < 0.0001). Left ventricular ejection fraction, ICD rate cut-off and time from implant were similar. Recreational athletes performed fewer hours of sports per week (median 4.5 vs. 6 h; p = 0.0004) and fewer participated in sports with burst-performances (vs. endurance) as their main sports: 4% vs. 65% (p < 0.0001). None of the athletes in either group died, required external resuscitation or was injured due to arrhythmia or shock. Freedom from definite or probable lead malfunction was similar (5-year 97% vs. 96%; 10-year 93% vs. 91%). Recreational athletes received fewer total shocks (13.8% vs. 26.5%, p = 0.01) due to fewer inappropriate shocks (2.5% vs. 12%; p = 0.01). The proportion receiving appropriate shocks was similar (12.5% vs. 15.5%, p = 0.51). Recreational athletes received fewer total (6.3% vs. 20.2%; p = 0.003), appropriate (3.8% vs. 11.4%; p = 0.06) and inappropriate (2.5% vs. 9.5%; p = 0.04) shocks during physical activity. Ventricular tachycardia/fibrillation storms during physical activity occurred in 0/80 recreational vs. 7/317 competitive athletes. Appropriate shocks during physical activity were related to underlying disease (p = 0.004) and competitive versus recreational sports (p = 0.004), but there was no relation with age, gender, type of indication, beta-blocker use or burst/endurance sports. The proportion of athletes who stopped sports due to shocks was similar (3.8% vs. 7.5%, p = 0.32). Conclusions: Participants in recreational sports had less frequent appropriate and inappropriate shocks during physical activity than participants in competitive sports. Shocks did not cause death or injury. Recreational athletes with ICDs can engage in sports without severe adverse outcomes unless other reasons preclude continuation
    corecore