55 research outputs found

    Integrin β<sub>1</sub>, osmosensing, and chemoresistance in mouse ehrlich carcinoma cells

    No full text
    Background/Aims: Altered expression of the integrin family of cell adhesion receptors has been associated with initiation, progression, and metastasis of solid tumors as well as in the development of chemoresistance. Here, we investigated the role of integrins, in particular integrin β1, in cell volume regulation and drug-induced apoptosis in adherent and non-adherent Ehrlich ascites cell lines. Methods: Adhesion phenotypes were verified by colorimetric cell-adhesion-assay. Quantitative real-time PCR and western blot were used to compare expression levels of integrin subunits. Small interfering RNA was used to silence integrin β1 expression. Regulatory volume decrease (RVD) after cell swelling was studied with calcein-fluorescence-self-quenching and Coulter counter analysis. Taurine efflux was estimated with tracer technique. Caspase assay was used to determine apoptosis. Results: We show that adherent cells have stronger fibronectin binding and a significantly increased expression of integrin α5, αv, and β1 at mRNA and protein level, compared to non-adherent cells. Knockdown of integrin β1 reduced RVD of the adherent but not of the non-adherent cells. Efflux of taurine was unaffected. In contrast to non-adherent, adherent cells exhibited chemoresistance to chemotherapeutic drugs (cisplatin and gemcitabine). However, knockdown of integrin β1 promoted cisplatin-induced caspase activity in adherent cells. Conclusion: Our data identifies integrin β1 as a part of the osmosensing machinery and regulator of cisplatin resistance in adherent Ehrlich cells

    Exposure to ambient particulate matter is associated with accelerated functional decline in idiopathic pulmonary fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis (IPF), a progressive disease with an unknown pathogenesis, may be due in part to an abnormal response to injurious stimuli by alveolar epithelial cells. Air pollution and particulate inhalation of matter evoke a wide variety of pulmonary and systemic inflammatory diseases. We therefore hypothesized that increased average ambient particulate matter (PM) concentrations would be associated with an accelerated rate of decline in FVC in IPF. METHODS: We identified a cohort of subjects seen at a single university referral center from 2007 to 2013. Average concentrations of particulate matter < 10 and < 2.5 μg/m3 (PM10 and PM2.5, respectively) were assigned to each patient based on geocoded residential addresses. A linear multivariable mixed-effects model determined the association between the rate of decline in FVC and average PM concentration, controlling for baseline FVC at first measurement and other covariates. RESULTS: One hundred thirty-five subjects were included in the final analysis after exclusion of subjects missing repeated spirometry measurements and those for whom exposure data were not available. There was a significant association between PM10 levels and the rate of decline in FVC during the study period, with each μg/m3 increase in PM10 corresponding with an additional 46 cc/y decline in FVC (P = .008). CONCLUSIONS: Ambient air pollution, as measured by average PM10 concentration, is associated with an increase in the rate of decline of FVC in IPF, suggesting a potential mechanistic role for air pollution in the progression of disease

    Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome

    Get PDF
    Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes

    Copy Number Variation and Transposable Elements Feature in Recent, Ongoing Adaptation at the Cyp6g1 Locus

    Get PDF
    The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high frequencies in populations around the world since the 1940s. Here we report the existence of a natural allelic series at this locus of D. melanogaster, involving copy number variation of Cyp6g1, and two additional transposable element insertions (a P and an HMS-Beagle). We provide evidence that this genetic variation underpins phenotypic variation, as the more derived the allele, the greater the level of DDT resistance. Tracking the spatial and temporal patterns of allele frequency changes indicates that the multiple steps of the allelic series are adaptive. Further, a DDT association study shows that the most resistant allele, Cyp6g1-[BP], is greatly enriched in the top 5% of the phenotypic distribution and accounts for ∼16% of the underlying phenotypic variation in resistance to DDT. In contrast, copy number variation for another candidate resistance gene, Cyp12d1, is not associated with resistance. Thus the Cyp6g1 locus is a major contributor to DDT resistance in field populations, and evolution at this locus features multiple adaptive steps occurring in rapid succession

    De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination

    Get PDF
    Myelination calls for a remarkable surge in cell metabolism to facilitate lipid and membrane production. Endogenous fatty acid (FA) synthesis represents a potentially critical process in myelinating glia. Using genetically modified mice, we show that Schwann cell (SC) intrinsic activity of the enzyme essential for de novo FA synthesis, fatty acid synthase (FASN), is crucial for precise lipid composition of peripheral nerves and fundamental for the correct onset of myelination and proper myelin growth. Upon FASN depletion in SCs, epineurial adipocytes undergo lipolysis, suggestive of a compensatory role. Mechanistically, we found that a lack of FASN in SCs leads to an impairment of the peroxisome proliferator-activated receptor (PPAR) γ–regulated transcriptional program. In agreement, defects in myelination of FASN-deficient SCs could be ameliorated by treatment with the PPARγ agonist rosiglitazone ex vivo and in vivo. Our results reveal that FASN-driven de novo FA synthesis in SCs is mandatory for myelination and identify lipogenic activation of the PPARγ transcriptional network as a putative downstream functional mediator

    Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    No full text
    Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g., secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene, encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular functions as well as their role in cancer and drug resistance

    Population Bottlenecks Increase Additive Genetic Variance But Do Not Break a Selection Limit in Rain Forest Drosophila

    No full text
    According to neutral quantitative genetic theory, population bottlenecks are expected to decrease standing levels of additive genetic variance of quantitative traits. However, some empirical and theoretical results suggest that, if nonadditive genetic effects influence the trait, bottlenecks may actually increase additive genetic variance. This has been an important issue in conservation genetics where it has been suggested that small population size might actually experience an increase rather than a decrease in the rate of adaptation. Here we test if bottlenecks can break a selection limit for desiccation resistance in the rain forest-restricted fly Drosophila bunnanda. After one generation of single-pair mating, additive genetic variance for desiccation resistance increased to a significant level, on average higher than for the control lines. Line crosses revealed that both dominance and epistatic effects were responsible for the divergence in desiccation resistance between the original control and a bottlenecked line exhibiting increased additive genetic variance for desiccation resistance. However, when bottlenecked lines were selected for increased desiccation resistance, there was only a small shift in resistance, much less than predicted by the released additive genetic variance. The small selection response in the bottlenecked lines was no greater than that observed in the control lines. Thus bottlenecks might produce a statistically detectable change in additive genetic variance but this change has no impact on the response to selection

    Intervention Effects of the Health Promotion Programme “Join the Healthy Boat” on Objectively Assessed Sedentary Time in Primary School Children in Germany

    No full text
    Sedentary behaviour (SB) in children is related to negative health consequences that can track into adulthood. The programme &ldquo;Join the Healthy Boat&rdquo; promotes reduced screen time and a less sedentary lifestyle in schoolchildren. This study investigated the effects of the programme on children&rsquo;s SB. For one year, teachers delivered the programme. A total of 231 children (7.0 &plusmn; 0.6 years) participated in the cluster-randomised study; there were 154 one year later at follow-up. Children&rsquo;s SB was assessed using multi-sensor accelerometery, screen time via parental questionnaire. Effects were analysed using (linear) mixed effects regression models. At baseline, children spent 211 (&plusmn;89) min daily in SB, at follow-up 259 (&plusmn;109) min/day with no significant difference between the intervention (IG) and control group (CG). SB was higher during weekends (p &lt; 0.01, for CG and IG). However, at follow-up, daily screen time decreased in IG (screen time of &gt;1 h/day: baseline: 33.3% vs. 27.4%; follow-up: 41.2% vs. 27.5%, for CG and IG, respectively). This multi-dimensional, low-threshold intervention for one year does not seem to achieve a significant reduction in children&rsquo;s SB, although screen time decreased in IG. Therefore, it should be considered that screen time cannot be the key contributor to SB and should not solely be used for changing children&rsquo;s SB. However, if screen time is targeted, interventions should promote the replacement of screen time with active alternatives
    corecore