248 research outputs found

    Marginalization of end-use technologies in energy innovation for climate protection

    Get PDF
    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies

    Altered collecting duct adenylyl cyclase content in collecting duct endothelin-1 knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelin-1 (ET-1) inhibition of vasopressin (AVP)-stimulated water reabsorption by the inner medullary collecting duct (IMCD) is associated with reduced cAMP accumulation. To determine the effect of ET-1 deficiency, AVP-stimulated cAMP responsiveness was assessed in IMCD from mice with collecting duct-specific deletion of ET-1 (CD ET-1 KO) and from control animals.</p> <p>Methods</p> <p>Cyclic AMP production, adenylyl cyclase (AC) mRNA, and AC protein were measured in acutely isolated IMCD.</p> <p>Results</p> <p>CD ET-1 KO IMCD had enhanced AVP-stimulated cAMP accumulation. Inhibition of calcium-stimulated AC using BAPTA did not prevent enhanced AVP responsiveness in CD ET-1 KO IMCD. Factors known to be modified by ET-1, including nitric oxide, cyclooxygenase metabolites, and superoxide did not affect the increased AVP responsiveness of CD ET-1 KO IMCD. Differential V2 receptor or G-protein activity was not involved since CD ET-1 KO IMCD had increased cAMP accumulation in response to forskolin and/or cholera toxin. CD ET-1 KO did not affect mRNA or protein levels of AC3, one of the major known collecting duct AC isoforms. However, the other known major collecting duct AC isoform (AC5/6) did have increased protein levels in CD ET-1 KO IMCD, although AC5 (weak signal) and 6 mRNA levels were unchanged.</p> <p>Conclusion</p> <p>ET-1 deficiency increases IMCD AC5/6 content, an effect that may synergize with acute ET-1 inhibition of AVP-stimulated cAMP accumulation.</p

    A Human Development Framework for CO2 Reductions

    Get PDF
    Although developing countries are called to participate in CO2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300Gt of cumulative CO2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20% to 30% of previously calculated CO2 budgets limiting global warming to 2{\deg}C. These constraints and results are incorporated into a CO2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2{\deg}C target after a particular development threshold is reached. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100Gt of CO2. These values are within the uncertainty range of emissions to limit global temperatures to 2{\deg}C.Comment: 14 pages, 7 figures, 1 tabl

    Non-classical ProIL-1beta activation during mammary gland infection is pathogen-dependent but caspase-1 independent

    Get PDF
    Infection of the mammary gland with live bacteria elicits a pathogen-specific host inflammatory response. To study these host-pathogen interactions wild type mice, NF-kappaB reporter mice as well as caspase-1 and IL-1beta knockout mice were intramammarily challenged with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The murine mastitis model allowed to compare the kinetics of the induced cytokine protein profiles and their underlying pathways. In vivo and ex vivo imaging showed that E. coli rapidly induced NF-kappaB inflammatory signaling concomitant with high mammary levels of TNF-alpha, IL-1 alpha and MCP-1 as determined by multiplex analysis. In contrast, an equal number of S. aureus bacteria induced a low NF-kappaB activity concomitant with high mammary levels of the classical IL-1beta fragment. These quantitative and qualitative differences in local inflammatory mediators resulted in an earlier neutrophil influx and in a more extensive alveolar damage post-infection with E. coli compared to S. aureus. Western blot analysis revealed that the inactive proIL-1beta precursor was processed into pathogen-specific IL-1beta fragmentation patterns as confirmed with IL-1beta knockout animals. Additionally, caspase-1 knockout animals allowed to investigate whether IL-1beta maturation depended on the conventional inflammasome pathway. The lack of caspase-1 did not prevent extensive proIL-1beta fragmentation by either of S. aureus or E. coli. These non-classical IL-1beta patterns were likely caused by different proteases and suggest a sentinel function of IL-1beta during mammary gland infection. Thus, a key signaling nodule can be defined in the differential host innate immune defense upon E. coli versus S. aureus mammary gland infection, which is independent of caspase-1

    Localization and trafficking of aquaporin 2 in the kidney

    Get PDF
    Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood–brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2

    Disease Severity in Patients Infected with Leishmania mexicana Relates to IL-1β

    Get PDF
    Leishmania mexicana can cause both localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, yet little is known about factors regulating disease severity in these patients. We analyzed if the disease was associated with single nucleotide polymorphisms (SNPs) in IL-1β (−511), CXCL8 (−251) and/or the inhibitor IL-1RA (+2018) in 58 Mexican mestizo patients with LCL, 6 with DCL and 123 control cases. Additionally, we analyzed the in vitro production of IL-1β by monocytes, the expression of this cytokine in sera of these patients, as well as the tissue distribution of IL-1β and the number of parasites in lesions of LCL and DCL patients. Our results show a significant difference in the distribution of IL-1β (−511 C/T) genotypes between patients and controls (heterozygous OR), with respect to the reference group CC, which was estimated with a value of 3.23, 95% CI = (1.2, 8.7) and p-value = 0.0167), indicating that IL-1β (−511 C/T) represents a variable influencing the risk to develop the disease in patients infected with Leishmania mexicana. Additionally, an increased in vitro production of IL-1β by monocytes and an increased serum expression of the cytokine correlated with the severity of the disease, since it was significantly higher in DCL patients heavily infected with Leishmania mexicana. The distribution of IL-1β in lesions also varied according to the number of parasites harbored in the tissues: in heavily infected LCL patients and in all DCL patients, the cytokine was scattered diffusely throughout the lesion. In contrast, in LCL patients with lower numbers of parasites in the lesions, IL-1β was confined to the cells. These data suggest that IL-1β possibly is a key player determining the severity of the disease in DCL patients. The analysis of polymorphisms in CXCL8 and IL-1RA showed no differences between patients with different disease severities or between patients and controls

    High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    Get PDF
    BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6)H(10)O(5) (l)+7 H(2)O (l)→12 H(2) (g)+6 CO(2) (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2)/glucose) of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H(2)), and a high energy-density carrier starch (14.8 H(2)-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy

    Molecular Identification and Expression Analysis of Filaggrin-2, a Member of the S100 Fused-Type Protein Family

    Get PDF
    Genes of the S100 fused-type protein (SFTP) family are clustered within the epidermal differentiation complex and encode essential components that maintain epithelial homeostasis and barrier functions. Recent genetic studies have shown that mutations within the gene encoding the SFTP filaggrin cause ichthyosis vulgaris and are major predisposing factors for atopic dermatitis. As a vital component of healthy skin, filaggrin is also a precursor of natural moisturizing factors. Here we present the discovery of a member of this family, designated as filaggrin-2 (FLG2) that is expressed in human skin. The FLG2 gene encodes a histidine- and glutamine-rich protein of approximately 248 kDa, which shares common structural features with other SFTP members, in particular filaggrin. We found that FLG2 transcripts are present in skin, thymus, tonsils, stomach, testis and placenta. In cultured primary keratinocytes, FLG2 mRNA expression displayed almost the same kinetics as that of filaggrin following Ca2+ stimulation, suggesting an important role in molecular regulation of epidermal terminal differentiation. We provide evidences that like filaggrin, FLG2 is initially expressed by upper granular cells, proteolytically processed and deposited in the stratum granulosum and stratum corneum (SC) layers of normal epidermis. Thus, FLG2 and filaggrin may have overlapping and perhaps synergistic roles in the formation of the epidermal barrier, protecting the skin from environmental insults and the escape of moisture by offering precursors of natural moisturizing factors

    Activation of Hypoxia Inducible Factor 1 Is a General Phenomenon in Infections with Human Pathogens

    Get PDF
    Background: Hypoxia inducible factor (HIF)-1 is the key transcriptional factor involved in the adaptation process of cells and organisms to hypoxia. Recent findings suggest that HIF-1 plays also a crucial role in inflammatory and infectious diseases. Methodology/Principal Findings: Using patient skin biopsies, cell culture and murine infection models, HIF-1 activation was determined by immunohistochemistry, immunoblotting and reporter gene assays and was linked to cellular oxygen consumption. The course of a S. aureus peritonitis was determined upon pharmacological HIF-1 inhibition. Activation of HIF-1 was detectable (i) in all ex vivo in biopsies of patients suffering from skin infections, (ii) in vitro using cell culture infection models and (iii) in vivo using murine intravenous and peritoneal S. aureus infection models. HIF-1 activation by human pathogens was induced by oxygen-dependent mechanisms. Small colony variants (SCVs) of S. aureus known to cause chronic infections did not result in cellular hypoxia nor in HIF-1 activation. Pharmaceutical inhibition of HIF-1 activation resulted in increased survival rates of mice suffering from a S. aureus peritonitis. Conclusions/Significance: Activation of HIF-1 is a general phenomenon in infections with human pathogenic bacteria, viruses, fungi and protozoa. HIF-1-regulated pathways might be an attractive target to modulate the course of life-threatening infections

    The Protease Inhibitor Alpha-2-Macroglobuline-Like-1 Is the p170 Antigen Recognized by Paraneoplastic Pemphigus Autoantibodies in Human

    Get PDF
    Paraneoplastic pemphigus (PNP) is a devastating autoimmune blistering disease, involving mucocutaneous and internal organs, and associated with underlying neoplasms. PNP is characterized by the production of autoantibodies targeting proteins of the plakin and cadherin families involved in maintenance of cell architecture and tissue cohesion. Nevertheless, the identity of an antigen of Mr 170,000 (p170), thought to be critical in PNP pathogenesis, has remained unknown
    corecore