1,500 research outputs found
Evidence for ubiquitous carbon grain destruction in hot protostellar envelopes
Earth is deficient in carbon and nitrogen by up to orders of
magnitude compared with the Sun. Destruction of (carbon- and nitrogen-rich)
refractory organics in the high-temperature planet forming regions could
explain this deficiency. Assuming a refractory cometary composition for these
grains, their destruction enhances nitrogen-containing oxygen-poor molecules in
the hot gas (K) after the initial formation and sublimation of
these molecules from oxygen-rich ices in the warm gas (K). Using
observations of high-mass protostars with ALMA, we find that
oxygen-containing molecules (CHOH and HNCO) systematically show no
enhancement in their hot component. In contrast, nitrogen-containing,
oxygen-poor molecules (CHCN and CHCN) systematically show an
enhancement of a factor in their hot component, pointing to
additional production of these molecules in the hot gas. Assuming only thermal
excitation conditions, we interpret these results as a signature of destruction
of refractory organics, consistent with the cometary composition. This
destruction implies a higher C/O and N/O in the hot gas than the warm gas,
while, the exact values of these ratios depend on the fraction of grains that
are effectively destroyed. This fraction can be found by future chemical models
that constrain C/O and N/O from the abundances of minor carbon, nitrogen and
oxygen carriers presented here.Comment: Accepted for publication in ApJ Letter
IDLaS-NL – A platform for running customized studies on individual differences in Dutch language skills via the internet
We introduce the Individual Differences in Language Skills (IDLaS-NL) web platform, which enables users to run studies on individual differences in Dutch language skills via the internet. IDLaS-NL consists of 35 behavioral tests, previously validated in participants aged between 18 and 30 years. The platform provides an intuitive graphical interface for users to select the tests they wish to include in their research, to divide these tests into different sessions and to determine their order. Moreover, for standardized administration the platform provides an application (an emulated browser) wherein the tests are run. Results can be retrieved by mouse click in the graphical interface and are provided as CSV-file output via email. Similarly, the graphical interface enables researchers to modify and delete their study configurations. IDLaS-NL is intended for researchers, clinicians, educators and in general anyone conducting fundamental research into language and general cognitive skills; it is not intended for diagnostic purposes. All platform services are free of charge. Here, we provide a description of its workings as well as instructions for using the platform. The IDLaS-NL platform can be accessed at www.mpi.nl/idlas-nl
Complex organic molecules in low-mass protostars on Solar System scales -- II. Nitrogen-bearing species
The chemical inventory of planets is determined by the physical and chemical
processes that govern the early phases of star formation. The aim is to
investigate N-bearing complex organic molecules towards two Class 0 protostars
(B1-c and S68N) at millimetre wavelengths with ALMA. Next, the results of the
detected N-bearing species are compared with those of O-bearing species for the
same and other sources. ALMA observations in Band 6 ( 1 mm) and Band 5
( 2 mm) are studied at 0.5" resolution, complemented by Band 3
( 3 mm) data in a 2.5" beam. NH2CHO, C2H5CN, HNCO, HN13CO, DNCO,
CH3CN, CH2DCN, and CHD2CN are identified towards the investigated sources.
Their abundances relative to CH3OH and HNCO are similar for the two sources,
with column densities that are typically an order of magnitude lower than those
of O-bearing species. The largest variations, of an order of magnitude, are
seen for NH2CHO abundance ratios with respect to HNCO and CH3OH and do not
correlate with the protostellar luminosity. In addition, within uncertainties,
the N-bearing species have similar excitation temperatures to those of
O-bearing species ( 100 300 K). The similarity of most abundances
with respect to HNCO, including those of CH2DCN and CHD2CN, hints at a shared
chemical history, especially the high D/H ratio in cold regions prior to star
formation. However, some of the variations in abundances may reflect the
sensitivity of the chemistry to local conditions such as temperature (e.g.
NH2CHO), while others may arise from differences in the emitting areas of the
molecules linked to their different binding energies in the ice. The two
sources discussed here add to the small number of sources with such a detailed
chemical analysis on Solar System scales. Future JWST data will allow a direct
comparison between the ice and gas abundances of N-bearing species.Comment: Accepted to A&A, 41 pages, 37 figure
BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway
Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton’s tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc–mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453
- …