1,500 research outputs found

    Evidence for ubiquitous carbon grain destruction in hot protostellar envelopes

    Get PDF
    Earth is deficient in carbon and nitrogen by up to 4{\sim}4 orders of magnitude compared with the Sun. Destruction of (carbon- and nitrogen-rich) refractory organics in the high-temperature planet forming regions could explain this deficiency. Assuming a refractory cometary composition for these grains, their destruction enhances nitrogen-containing oxygen-poor molecules in the hot gas (300\gtrsim 300K) after the initial formation and sublimation of these molecules from oxygen-rich ices in the warm gas (150{\sim}150K). Using observations of 3737 high-mass protostars with ALMA, we find that oxygen-containing molecules (CH3_3OH and HNCO) systematically show no enhancement in their hot component. In contrast, nitrogen-containing, oxygen-poor molecules (CH3_3CN and C2_2H3_3CN) systematically show an enhancement of a factor 5{\sim} 5 in their hot component, pointing to additional production of these molecules in the hot gas. Assuming only thermal excitation conditions, we interpret these results as a signature of destruction of refractory organics, consistent with the cometary composition. This destruction implies a higher C/O and N/O in the hot gas than the warm gas, while, the exact values of these ratios depend on the fraction of grains that are effectively destroyed. This fraction can be found by future chemical models that constrain C/O and N/O from the abundances of minor carbon, nitrogen and oxygen carriers presented here.Comment: Accepted for publication in ApJ Letter

    IDLaS-NL – A platform for running customized studies on individual differences in Dutch language skills via the internet

    Get PDF
    We introduce the Individual Differences in Language Skills (IDLaS-NL) web platform, which enables users to run studies on individual differences in Dutch language skills via the internet. IDLaS-NL consists of 35 behavioral tests, previously validated in participants aged between 18 and 30 years. The platform provides an intuitive graphical interface for users to select the tests they wish to include in their research, to divide these tests into different sessions and to determine their order. Moreover, for standardized administration the platform provides an application (an emulated browser) wherein the tests are run. Results can be retrieved by mouse click in the graphical interface and are provided as CSV-file output via email. Similarly, the graphical interface enables researchers to modify and delete their study configurations. IDLaS-NL is intended for researchers, clinicians, educators and in general anyone conducting fundamental research into language and general cognitive skills; it is not intended for diagnostic purposes. All platform services are free of charge. Here, we provide a description of its workings as well as instructions for using the platform. The IDLaS-NL platform can be accessed at www.mpi.nl/idlas-nl

    Complex organic molecules in low-mass protostars on Solar System scales -- II. Nitrogen-bearing species

    Get PDF
    The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at millimetre wavelengths with ALMA. Next, the results of the detected N-bearing species are compared with those of O-bearing species for the same and other sources. ALMA observations in Band 6 (\sim 1 mm) and Band 5 (\sim 2 mm) are studied at \sim 0.5" resolution, complemented by Band 3 (\sim 3 mm) data in a \sim 2.5" beam. NH2CHO, C2H5CN, HNCO, HN13CO, DNCO, CH3CN, CH2DCN, and CHD2CN are identified towards the investigated sources. Their abundances relative to CH3OH and HNCO are similar for the two sources, with column densities that are typically an order of magnitude lower than those of O-bearing species. The largest variations, of an order of magnitude, are seen for NH2CHO abundance ratios with respect to HNCO and CH3OH and do not correlate with the protostellar luminosity. In addition, within uncertainties, the N-bearing species have similar excitation temperatures to those of O-bearing species (\sim 100 \sim 300 K). The similarity of most abundances with respect to HNCO, including those of CH2DCN and CHD2CN, hints at a shared chemical history, especially the high D/H ratio in cold regions prior to star formation. However, some of the variations in abundances may reflect the sensitivity of the chemistry to local conditions such as temperature (e.g. NH2CHO), while others may arise from differences in the emitting areas of the molecules linked to their different binding energies in the ice. The two sources discussed here add to the small number of sources with such a detailed chemical analysis on Solar System scales. Future JWST data will allow a direct comparison between the ice and gas abundances of N-bearing species.Comment: Accepted to A&A, 41 pages, 37 figure

    BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway

    Get PDF
    Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton’s tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc–mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453
    corecore