22 research outputs found

    Detecting Environmental Contamination of MRSA in Ambulances: A Novel and Efficient Sampling Methodology

    Get PDF
    Background: Methicillin-resistant Staphylococcus aureus (MRSA) can be found in emergency medical services (EMS) ambulances. This poses an occupational risk and patient safety hazard. Screening for environmental contamination is often not performed due to limited resources and logistical challenges. This study’s objective was to compare traditional screening of individual surfaces versus “pooled sampling” to efficiently identify contamination. Methods: A cross-sectional study, conducted among 145 Ohio EMS ambulances from 84 agencies, tested a novel pooled sampling methodology to detect MRSA contaminated ambulances. For ambulances screened using pooled sampling, 3 samples were collected within each ambulance. Pool One included cabinets, doorways, and ceiling bar. Pool Two included cot, seats, and backboard. Pool Three included steering wheel, kits, and clipboard. For ambulances screened with the traditional detection technique, each of the 9 aforementioned surfaces were sampled individually. Descriptive statistics and unadjusted and adjusted odds ratios (OR) were calculated to compare the 2 methods. Results: Forty-seven of 145 ambulances (32.4%) had at least 1 of the 9 locations contaminated with MRSA. When comparing the 2 screening methodologies, no significant difference was observed regarding the overall detection of MRSA contaminated ambulances (24/60 [40%] versus 23/85 [27.6%], P value: 0.1000). This indicates that pooled sampling appears as an efficient method for identification of MRSA contaminated ambulances. Conclusion: One-third of Ohio ambulances had MRSA contamination in this study. Therefore, an efficient methodology to identify contaminated ambulances with hazardous pathogens is incredibly valuable. Pooling can help save resources and simplify sampling logistics, all which could positively impact infection control practices in emergency medical services

    Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio

    Get PDF
    Lyme disease, the most common vector-borne disease in the United States, is caused by a tick-borne infection with Borrelia burgdorferi. Currently, Ohio is considered by the Centers for Disease Control and Prevention (CDC) to be non-endemic for Lyme disease. The low incidence of Lyme disease in this state was largely attributed to the absence of the transmitting vector, Ixodes scapularis, commonly known as the blacklegged tick. However, a tick surveillance program established by Ohio Department of Health indicated that the number of I. scapularis ticks in Ohio had increased sharply in recent years, from 0 - 5 ticks per year during 1983 - 2008 to 15 in 2009, 40 in 2010, and 184 in 2011. During the fall deer hunting season, examination of deer heads submitted to Ohio Department of Agriculture found 29 I. scapularis from 7 counties in 2010 and 1,830 from 25 counties in 2011. As of 2012, the tick had been found in 57 of the 88 counties of Ohio. In addition, all three active stages (larva, nymph, and adult) of I. scapularis were found in Tiverton Township of Coshocton County, demonstrating the presence of established tick populations at this central Ohio location. Of 530 nymphal or adult I. scapularis analyzed by quantitative polymerase chain reaction (qPCR), 32 (6.1%) tested positive for the B. burgdorferi flaB gene, ranging from 36 to 390,000 copies per tick. Antibodies to B. burgdorferi antigens were detected in 2 of 10 (20%) field-captured Peromyscus leucopus from Tiverton Township, and in 41 of 355 (11.5%) dogs residing in Ohio. Collectively, these data suggest that the enzootic life cycle of B. burgdorferi has become established in Ohio, which poses risk of Lyme disease to people and animals in the area

    Characterization and Prevalence of a New Porcine Calicivirus in Swine, United States

    Get PDF
    Real-time reverse transcription PCR revealed that new St-Valerien–like porcine caliciviruses are prevalent (2.6%–80%; 23.8% overall) in finisher pigs in North Carolina. One strain, NC-WGP93C, shares 89.3%–89.7% genomic nucleotide identity with Canadian strains. Whether these viruses cause disease in pigs or humans or are of food safety concern requires further investigation

    Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus.

    Get PDF
    Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component

    Molecular epidemiology of environmental MRSA at an equine teaching hospital: introduction, circulation and maintenance

    No full text
    International audienceThe role that environmental contamination might play as a reservoir and a possible source of Methicillin-resistant Staphylococcus aureus (MRSA) for patients and personnel at equine veterinary hospitals remains undefined, as the environment has only been monitored during outbreaks or for short periods. Therefore, the objectives of this study were to determine the monthly presence, distribution, and characteristics of environmental MRSA at an equine hospital, and to establish patterns of contamination over time using molecular epidemiological analyses. For this purpose, a yearlong active MRSA surveillance was performed targeting the environment and incoming patients. Antimicrobial susceptibility testing, SCCmec typing, PFGE typing, and dendrographic analysis were used to characterize and analyze these isolates. Overall, 8.6% of the surfaces and 5.8% of the horses sampled were positive for MRSA. The most common contaminated surfaces were: computers, feed-water buckets, and surgery tables-mats. Ninety percent of the isolates carried SCCmec type IV, and 62.0% were classified as USA500. Molecular analysis showed that new pulsotypes were constantly introduced into the hospital throughout the year. However, maintenance of strains in the environment was also observed when unique clones were detected for 2 consecutive months on the same surfaces. Additionally, pulsotypes were circulating throughout several areas and different contact surfaces of the hospital. Based on these results, it is evident that MRSA is constantly introduced and frequently found in the equine hospital environment, and that some contact surfaces could act as “hot-spots”. These contaminated surfaces should be actively targeted for strict cleaning and disinfection as well as regular monitoring

    High prevalence of multidrug-resistant community-acquired methicillin-resistant staphylococcus aureus at the largest veterinary teaching hospital in Costa Rica

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen associated with severe infections in companion animals present in the community, and it is diagnosed in animals admitted to veterinary hospitals. However, reports that describe the circulation of MRSA in animal populations and veterinary settings in Latin America are scarce. Therefore, the objective of this study was to determine the prevalence and investigate the molecular epidemiology of MRSA in the environment of the largest veterinary teaching hospital in Costa Rica. Preselected contact surfaces were sampled twice within a 6-week period. Antimicrobial resistance, SCCmec type, Panton-Valentine leukocidin screening, USA type, and clonality were assessed in all recovered isolates. Overall, MRSA was isolated from 26.5% (27/102) of the surfaces sampled, with doors, desks, and examination tables most frequently contaminated. Molecular analysis demonstrated a variety of surfaces from different sections of the hospital contaminated by three highly related clones/pulsotypes. All, but one of the isolates were characterized as multidrug-resistant SCCmec type IV-USA700, a strain sporadically described in other countries and often classified as community acquired. The detection and frequency of this unique strain in this veterinary setting suggest Costa Rica has a distinctive MRSA ecology when compared with other countries/regions. The high level of environmental contamination highlights the necessity to establish and enforce standard cleaning and disinfection protocols to minimize further spread of this pathogen and reduce the risk of nosocomial and/or occupational transmission of MRSA.El Staphylococcus aureus resistente a la meticilina (MRSA siglas en ingles) es un patógeno asociado a infecciones graves en animales de compañía animales de compañía presentes en la comunidad, y se diagnostica en animales ingresados en hospitales veterinarios. Sin embargo, los informes que describan la circulación de MRSA en poblaciones animales y entornos veterinarios en América Latina son escasos. Por lo tanto, el objetivo de este estudio fue determinar la prevalencia e investigar la epidemiología molecular del MRSA en el entorno del mayor hospital universitario veterinario de Costa Rica. Las superficies de contacto preseleccionadas se tomaron muestras dos veces en un período de 6 semanas. Se analizó la resistencia a los antimicrobianos, el tipo de SCCmec, la leucocidina Panton-Valentine y clonalidad en todos los aislados recuperados. En general, el MRSA se aisló de 26,5% (27/102) de las superficies muestreadas, siendo las puertas, los escritorios y las mesas de examen las más frecuentemente contaminadas. El análisis molecular demostró una variedad de superficies de diferentes secciones del hospital contaminadas por tres clones/pulsos altamente relacionados. Todos los aislados, excepto uno, se caracterizaron como SCCmec tipo IV-USA700, una cepa descrita esporádicamente en otros países y a menudo clasificada como adquirida en la comunidad. La detección y la frecuencia de esta cepa única en este entorno veterinario sugieren que Costa Rica tiene una ecología distintiva de MRSA en comparación con otros países. ecología del MRSA en comparación con otros países/regiones. El alto nivel de contaminación ambiental La alta contaminación ambiental subraya la necesidad de establecer y aplicar protocolos de limpieza y desinfección estándar para minimizar la minimizar la propagación de este patógeno y reducir el riesgo de transmisión nosocomial y/o laboral del MRSA.Escuela de Medicina Veterinari
    corecore