102 research outputs found

    3-(4-Bromo­phen­yl)-5-[4-(dimethyl­amino)­phen­yl]-4,5-dihydro-1H-pyrazole-1-carbothio­amide

    Get PDF
    The mol­ecule of the title pyrazole derivative, C18H19BrN4S, is twisted. The central pyrazole ring, which adopts a flattened envelope conformation, is almost coplanar with the 4-bromo­phenyl ring, whereas it is inclined to the 4-(dimethyl­amino)­phenyl ring making dihedral angles of 1.68 (6) and 85.12 (6)°, respectively. The dihedral angle between the two benzene rings is 86.56 (6)°. The dimethyl­amino group is slightly twisted from the attached benzene ring [C—C—N—C torsion angles = 8.4 (2) and 8.9 (2)°]. In the crystal, mol­ecules are linked by inter­molecular N—H⋯S hydrogen bonds into chains along [20]. The crystal is further stabilized by C—H⋯π inter­actions

    LC-MS Supported Studies on the in Vitro Metabolism of both Enantiomers of Flubatine and the in Vivo Metabolism of (+)-[(18)F]Flubatine-A Positron Emission Tomography Radioligand for Imaging alpha4beta2 Nicotinic Acetylcholine Receptors

    No full text
    Both enantiomers of [18F]flubatine are promising radioligands for neuroimaging of α4β2 nicotinic acetylcholine receptors (nAChRs) by positron emission tomography (PET). To support clinical studies in patients with early Alzheimer’s disease, a detailed examination of the metabolism in vitro and in vivo has been performed. (+)- and (−)-flubatine, respectively, were incubated with liver microsomes from mouse and human in the presence of NADPH (β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt). Phase I in vitro metabolites were detected and their structures elucidated by LC-MS/MS (liquid chromatography-tandem mass spectrometry). Selected metabolite candidates were synthesized and investigated for structural confirmation. Besides a high level of in vitro stability, the microsomal incubations revealed some species differences as well as enantiomer discrimination with regard to the formation of monohydroxylated products, which was identified as the main metabolic pathway in this assay. Furthermore, after injection of 250 MBq (+)-[18F]flubatine (specific activity > 350 GBq/μmol) into mouse, samples were prepared from brain, liver, plasma, and urine after 30 min and investigated by radio-HPLC (high performance liquid chromatography with radioactivity detection). For structure elucidation of the radiometabolites of (+)-[18F]flubatine formed in vivo, identical chromatographic conditions were applied to LC-MS/MS and radio-HPLC to compare samples obtained in vitro and in vivo. By this correlation approach, we assigned three of four main in vivo radiometabolites to products that are exclusively C- or N-hydroxylated at the azabicyclic ring system of the parent molecule

    Synthesis of a new HYNIC-DAPI derivative for labelling with ⁹⁹ᵐTechnetium and its in vitro evaluation in an FRTL5 cell line

    Get PDF
    4′,6-Diamidine-2-phenylindole (DAPI) is a common fluorochrome that is able to bind to deoxyribonucleic acid (DNA) with distinct, sequence-dependent enhancement of fluorescence. This work presents the synthesis of a new multifunctional compound that includes the fluorescent dye as a ⁹⁹ᵐTechnetium (⁹⁹ᵐTc) carrier. A new technique for the bioconjugation of DAPI with 6-hydrazinonicotinic acid (HYNIC) through an amide linkage was developed. The radiolabelling was performed with HYNIC as a chelator and N-IJ2-hydroxy-1,1-bisIJhydroxymethyl)ethyl)glycine (tricine) as a coligand. Furthermore, experimental evidence showed that ⁹⁹ᵐTc complexes with DAPI as DNA-binding moieties are detectable in living Fischer rat thyroid follicular cell line 5 (FRTL5) and their nuclei. The investigations indicated further that the new HYNIC-DAPI derivative is able to interact with double-stranded DNA. This establishes the possibility of locating ⁹⁹ᵐTc in close proximity to biological structures of living cells, of which especially the genetic information-carrying cell compartments are at the centre of interest. In this context, further investigations are related to the radiotoxic effects of DNA-bound ⁹⁹ᵐTc-HYNIC-DAPI derivatives and dosimetric calculations

    Torque vectoring for electric vehicles with individually controlled motors: State-of-the-art and future developments

    No full text
    © 2012 WEVA.This paper deals with the description of current and future vehicle technology related to yaw moment control, anti-lock braking and traction control through the employment of effective torque vectoring strategies for electric vehicles. In particular, the adoption of individually controlled electric powertrains with the aim of tuning the vehicle dynamic characteristics in steady-state and transient conditions is discussed. This subject is currently investigated within the European Union (EU) funded Seventh Framework Programme (FP7) consortium E-VECTOORC, focused on the development and experimental testing of novel control strategies. Through a comprehensive literature review, the article outlines the stateof- the-art of torque vectoring control for fully electric vehicles and presents the philosophy and the potential impact of the E-VECTOORC control structure from the viewpoint of torque vectoring for vehicle dynamics enhancement

    Torque vectoring for electric vehicles with individually controlled motors: State-of-the-art and future developments

    No full text
    © 2012 WEVA.This paper deals with the description of current and future vehicle technology related to yaw moment control, anti-lock braking and traction control through the employment of effective torque vectoring strategies for electric vehicles. In particular, the adoption of individually controlled electric powertrains with the aim of tuning the vehicle dynamic characteristics in steady-state and transient conditions is discussed. This subject is currently investigated within the European Union (EU) funded Seventh Framework Programme (FP7) consortium E-VECTOORC, focused on the development and experimental testing of novel control strategies. Through a comprehensive literature review, the article outlines the stateof- the-art of torque vectoring control for fully electric vehicles and presents the philosophy and the potential impact of the E-VECTOORC control structure from the viewpoint of torque vectoring for vehicle dynamics enhancement
    corecore