424 research outputs found

    The use of phosphoric acid as a pickling reagent for enamels

    Get PDF
    A review of the available literature reveals that no one has used phosphoric acid for pickling sheet steel for enameling purposes. Articles have been published indicating the corrosive action of phosphoric acid, but these investigations were carried out in an attempt to find an alloy that would resist the corrosive action of the acid --Introduction, page 1

    Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones

    Get PDF
    The pharmacology of novel psychoactive substances is mostly unknown. We evaluated the transporter and receptor interaction profiles of a series of para-(4)-substituted amphetamines and pyrovalerone cathinones. We tested the potency of these compounds to inhibit the norepinephrine (NE), dopamine (DA), and serotonin (5-HT) transporters (NET, DAT, and SERT, respectively) using human embryonic kidney 293 cells that express the respective human transporters. We also tested the substance-induced efflux of NE, DA, and 5-HT from monoamine-loaded cells, binding affinities to monoamine receptors, and 5-HT2B receptor activation. Para-(4)-substituted amphetamines, including 4-methylmethcathinone (mephedrone), 4-ethylmethcathinone, 4-fluoroamphetamine, 4-fluoromethamphetamine, 4-fluoromethcatinone (flephedrone), and 4-bromomethcathinone, were relatively more serotonergic (lower DAT:SERT ratio) compared with their analogs amphetamine, methamphetamine, and methcathinone. The 4-methyl, 4-ethyl, and 4-bromo groups resulted in enhanced serotonergic properties compared with the 4-fluoro group. The para-substituted amphetamines released NE and DA. 4-Fluoramphetamine, 4-flouromethamphetamine, 4-methylmethcathinone, and 4-ethylmethcathinone also released 5-HT similarly to 3,4-methylenedioxymethamphetamine. The pyrovalerone cathinones 3,4-methylenedioxypyrovalerone, pyrovalerone, α-pyrrolidinovalerophenone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, and 3,4-methylenedioxy-α-pyrrolidinobutiophenone potently inhibited the NET and DAT but not the SERT. Naphyrone was the only pyrovalerone that also inhibited the SERT. The pyrovalerone cathinones did not release monoamines. Most of the para-substituted amphetamines exhibited affinity for the 5-HT2A receptor but no relevant activation of the 5-HT2B receptor. All the cathinones exhibited reduced trace amine-associated receptor 1 binding compared with the non-β-keto-amphetamines. In conclusion, para-substituted amphetamines exhibited enhanced direct and indirect serotonergic agonist properties and are likely associated with more MDMA-like effects. The pharmacological profile of the pyrovalerone cathinones predicts pronounced stimulant effects and high abuse liability

    Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs)

    Get PDF
    4-Thio-substituted phenethylamines (2C-T drugs) are potent psychedelics with poorly defined pharmacological properties. Because of their psychedelic effects, 2C-T drugs are sometimes sold as new psychoactive substances (NPSs). The aim of the present study was to characterize the monoamine receptor and transporter interaction profiles of a series of 2C-T drugs.; We determined the binding affinities of 2C-T drugs at monoamine receptors and transporters in human cells that were transfected with the respective receptors or transporters. We also investigated the functional activation of serotonergic 5-hydroxytryptamine 2A (5-HT2A) and 5-HT2B receptors, activation of human trace amine-associated receptor 1 (TAAR1), and inhibition of monoamine uptake transporters.; 2C-T drugs had high affinity for 5-HT2A and 5-HT2C receptors (1-54 nM and 40-350 nM, respectively). With activation potencies of 1-53 nM and 44-370 nM, the drugs were potent 5-HT2A receptor and 5-HT2B receptor, respectively, partial agonists. An exception to this were the benzylthiophenethylamines, which did not potently activate the 5-HT2B receptor (EC50 > 3000 nM). Furthermore, the compounds bound to serotonergic 5-HT1A and adrenergic receptors. The compounds had high affinity for the rat TAAR1 (5-68 nM) and interacted with the mouse but not human TAAR1. The 2C-T drugs did not potently interact with monoamine transporters (Ki > 4000 nM).; The receptor binding profile of 2C-T drugs predicts psychedelic effects that are mediated by potent 5-HT2 receptor interactions

    Pharmacological profile of novel psychoactive benzofurans

    Get PDF
    Benzofurans are newly used psychoactive substances, but their pharmacology is unknown. The aim of the present study was to pharmacologically characterize benzofurans in vitro.; We assessed the effects of the benzofurans 5-APB, 5-APDB, 6-APB, 6-APDB, 4-APB, 7-APB, 5-EAPB and 5-MAPDB and benzodifuran 2C-B-FLY on the human noradrenaline (NA), dopamine and 5-HT uptake transporters using HEK 293 cells that express the respective transporters. We also investigated the release of NA, dopamine and 5-HT from monoamine-preloaded cells, monoamine receptor-binding affinity and 5-HT2A and 5-HT2B receptor activation.; All of the benzofurans inhibited NA and 5-HT uptake more than dopamine uptake, similar to methylenedioxymethamphetamine (MDMA) and unlike methamphetamine. All of the benzofurans also released monoamines and interacted with trace amine-associated receptor 1 (TA1 receptor), similar to classic amphetamines. Most benzofurans were partial 5-HT2A receptor agonists similar to MDMA, but also 5-HT2B receptor agonists, unlike MDMA and methamphetamine. The benzodifuran 2C-B-FLY very potently interacted with 5-HT2 receptors and also bound to TA1 receptors.; Despite very similar structures, differences were found in the pharmacological profiles of different benzofurans and compared with their amphetamine analogues. Benzofurans acted as indirect monoamine agonists that interact with transporters similarly to MDMA. The benzofurans also interacted with 5-HT receptors. This pharmacological profile probably results in MDMA-like entactogenic psychoactive properties. However, benzofurans induce 5-HT2B receptor activation associated with heart valve fibrosis. The pharmacology of 2C-B-FLY indicates predominant hallucinogenic properties and a risk for vasoconstriction

    Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens

    Get PDF
    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties

    EVALUACIÓN DEL MODELO DE DESARROLLO DE RECURSO EDUCATIVO ABIERTO (REA)

    Get PDF
    Analizar un modelo basado en un diseño instruccional sobre la creación, uso, diseminación y explotación de los REA, que pudiese ser parte fundamental en la enseñanza con nuevas estrategias, abordando métodos de recolección de evidencias o datos que sirvan para sustentar esta evaluación, por medio de la aplicación de rubricas, métricas de calidad, encuestas, listas de cotejo, y la puesta en prueba de las aplicaciones desarrolladas con base en este modelo, aplicándolas a estudiantes de nivel superior

    Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives

    Get PDF
    Aminoindanes, piperazines, and pipradrol derivatives are novel psychoactive substances found in "Ecstasy" tablets as replacements for 3,4-methylenedioxymethamphetamine (MDMA) or substances sold as "ivory wave." The pharmacology of these MDMA- and methylphenidate-like substances is poorly known. We characterized the pharmacology of the aminoindanes 5,6-methylenedioxy-2-aminoindane (MDAI), 5-iodoaminoindane (5-IAI), and 2-aminoindane (2-AI), the piperazines meta-chlorophenylpiperazine (m-CPP), trifluoromethylphenylpiperazine (TFMPP), and 1-benzylpiperazine (BZP), and the pipradrol derivatives desoxypipradrol (2-diphenylmethylpiperidine [2-DPMP]), diphenylprolinol (diphenyl-2-pyrrolidinemethanol [D2PM]), and methylphenidate. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine [5-HT]) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporters (NET, DAT, and SERT). We also evaluated the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells and the binding affinity to monoamine transporters and receptors, including trace amine-associated receptor 1 (TAAR1). 5-IAI and MDAI preferentially inhibited the SERT and NET and released 5-HT. 2-AI interacted with the NET. BZP blocked the NET and released DA. m-CPP and TFMPP interacted with the SERT and serotonergic receptors. The pipradrol derivatives were potent and selective catecholamine transporter blockers without substrate releasing properties. BZP, D2PM, and 2-DPMP lacked serotonergic activity and TAAR1 binding, in contrast to the aminoindanes and phenylpiperazines. In summary, all of the substances were monoamine transporter inhibitors, but marked differences were found in their DAT vs. SERT inhibition profiles, release properties, and receptor interactions. The pharmacological profiles of D2PM and 2-DPMP likely predict a high abuse liability

    Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs)

    Get PDF
    N-2-methoxybenzyl-phenethylamines (NBOMe drugs) are newly used psychoactive substances with poorly defined pharmacological properties. The aim of the present study was to characterize the receptor binding profiles of a series of NBOMe drugs compared with their 2,5-dimethoxy-phenethylamine analogs (2C drugs) and lysergic acid diethylamide (LSD) in vitro.; We investigated the binding affinities of 2C drugs (2C-B, 2C-C, 2C-D, 2C-E, 2C-H, 2C-I, 2C-N, 2C-P, 2C-T-2, 2C-T-4, 2C-T-7, and mescaline), their NBOMe analogs, and LSD at monoamine receptors and determined functional 5-hydroxytryptamine-2A (5-HT2A) and 5-HT2B receptor activation. Binding at and the inhibition of monoamine uptake transporters were also determined. Human cells that were transfected with the respective human receptors or transporters were used (with the exception of trace amine-associated receptor-1 [TAAR1], in which rat/mouse receptors were used).; All of the compounds potently interacted with serotonergic 5-HT2A, 5-HT2B, 5-HT2C receptors and rat TAAR1 (most Ki and EC50: <1 μM). The N-2-methoxybenzyl substitution of 2C drugs increased the binding affinity at serotonergic 5-HT2A, 5-HT2C, adrenergic α1, dopaminergic D1-3, and histaminergic H1 receptors and monoamine transporters but reduced binding to 5-HT1A receptors and TAAR1. As a result, NBOMe drugs were very potent 5-HT2A receptor agonists (EC50: 0.04-0.5 μM) with high 5-HT2A/5-HT1A selectivity and affinity for adrenergic α1 receptors (Ki: 0.3-0.9 μM) and TAAR1 (Ki: 0.06-2.2 μM), similar to LSD, but not dopaminergic D1-3 receptors (most Ki:>1 μM), unlike LSD.; The binding profile of NBOMe drugs predicts strong hallucinogenic effects, similar to LSD, but possibly more stimulant properties because of α1 receptor interactions
    corecore