13 research outputs found

    After surviving cancer, what about late life effects of the cure?

    No full text
    The widely used chemotherapeutic cisplatin causes ototoxicity as late‐term side effect. In this issue, Benkafadar et al (2017) decipher the mechanism of cisplatin‐induced ototoxicity and provide evidence that transient inhibition of p53 ameliorates ototoxicity without influencing chemotherapeutic efficacy. These findings may open exciting perspectives for reducing (late‐term) side effects of cancer treatment

    Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks

    No full text
    Chronic stalling of DNA replication forks caused by DNA damage can lead to genomic instability. Cells have evolved lesion bypass pathways such as postreplication repair (PRR) to resolve these arrested forks. In yeast, one branch of PRR involves proliferating cell nuclear antigen (PCNA) polyubiquitination mediated by the Rad5-Ubc13-Mms2 complex that allows bypass of DNA lesion by a template-switching mechanism. Previously, we identified human SHPRH as a functional homologue of yeast Rad5 and revealed the existence of RAD5-like pathway in human cells. Here we report the identification of HLTF as a second RAD5 homologue in human cells. HLTF, like SHPRH, shares a unique domain architecture with Rad5 and promotes lysine 63-linked polyubiquitination of PCNA. Similar to yeast Rad5, HLTF is able to interact with UBC13 and PCNA, as well as SHPRH; and the reduction of either SHPRH or HLTF expression enhances spontaneous mutagenesis. Moreover, HItf-deficient mouse embryonic fibroblasts show elevated chromosome breaks and fusions after methyl methane sulfonate treatment. Our results suggest that HLTF and SHPRH are functional homologues of yeast Rad5 that cooperatively mediate PCNA polyubiquitination and maintain genomic stability

    Deciphering the RNA landscape by RNAome sequencing

    No full text
    Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods. © Kasper WJ Derks, Branislav Misovic, Mirjam CGN van den Hout, Christel EM Kockx, Cesar Payan Gomez, Rutger WW Brouwer, Harry Vrieling, Jan HJ Hoeijmakers, Wilfred FJ van IJcken, and Joris Pothof

    Deciphering the RNA landscape by RNAome sequencing

    Get PDF
    Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods. © Kasper WJ Derks, Branislav Misovic, Mirjam CGN van den Hout, Christel EM Kockx, Cesar Payan Gomez, Rutger WW Brouwer, Harry Vrieling, Jan HJ Hoeijmakers, Wilfred FJ van IJcken, and Joris Pothof

    Cellular senescence drives age-dependent hepatic steatosis

    Get PDF
    The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular senescence refers to a state of irreversible cell-cycle arrest combined with the secretion of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to age-related tissue degeneration. Here we show that the accumulation of senescent cells promotes hepatic fat accumulation and steatosis. We report a close correlation between hepatic fat accumulation and markers of hepatocyte senescence. The elimination of senescent cells by suicide gene-meditated ablation of p16Ink4a-expressing senescent cells in INK-ATTAC mice or by treatment with a combination of the senolytic drugs dasatinib and quercetin (D+Q) reduces overall hepatic steatosis. Conversely, inducing hepatocyte senescence promotes fat accumulation in vitro and in vivo. Mechanistically, we show that mitochondria in senescent cells lose the ability to metabolize fatty acids efficiently. Our study demonstrates that cellular senescence drives hepatic steatosis and elimination of senescent cells may be a novel therapeutic strategy to reduce steatosis
    corecore