122 research outputs found

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Expression of the Pupal Determinant broad during Metamorphic and Neotenic Development of the Strepsipteran Xenos vesparum Rossi

    Get PDF
    Derived members of the endoparasitic order Strepsiptera have acquired an extreme form of sexual dimorphism whereby males undergo metamorphosis and exist as free-living adults while females remain larviform, reaching sexual maturity within their hosts. Expression of the transcription factor, broad (br) has been shown to be required for pupal development in insects in which both sexes progress through metamorphosis. A surge of br expression appears in the last larval instar, as the epidermis begins pupal development. Here we ask if br is also up-regulated in the last larval instar of male Xenos vesparum Rossi (Stylopidae), and whether such expression is lost in neotenic larviform females. We clone three isoforms of br from X. vesparum (Xv′br), and show that they share greatest similarity to the Z1, Z3 and Z4 isoforms of other insect species. By monitoring Xv′br expression throughout development, we detect elevated levels of total br expression and the Xv′Z1, Xv′Z3, and Xv′Z4 isoforms in the last larval instar of males, but not females. By focusing on Xv′br expression in individual samples, we show that the levels of Xv′BTB and Xv′Z3 in the last larval instar of males are bimodal, with some males expressing 3X greater levels of Xv′br than fourth instar femlaes. Taken together, these data suggest that neoteny (and endoparasitism) in females of Strepsiptera Stylopidia could be linked to the suppression of pupal determination. Our work identifies a difference in metamorphic gene expression that is associated with neoteny, and thus provides insights into the relationship between metamorphic and neotenic development. © 2014 Erezyilmaz et al

    Air–liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC)

    Get PDF
    The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro

    Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances

    Get PDF
    Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism

    The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review

    Get PDF
    BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model. The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution

    Differential and tissue-specific regulation of the multiple rat c-erbA messenger RNA species by thyroid hormone.

    No full text
    Thyroid hormone (T3) has been shown to regulate the level of its receptor in a number of tissues and cell lines. Recently, proteins encoded by the protooncogene c-erbA have been identified as T3 receptors. In the rat, four c-erbA gene products have been isolated, three of which, r-erbA alpha-1, r-erbA beta-1, and r-erbA beta-2, encode biologically active T3 receptors; the fourth, r-erbA alpha-2, may play an inhibitory role in T3 action. The present work examines the molecular nature of T3 receptor autoregulation using probes specific for each c-erbA mRNA. Rats were rendered hypothyroid with propylthiouracil and then treated with either saline or T3. Northern blot analyses reveal marked tissue-specific and differential regulation of the multiple c-erbA mRNAs by T3. In the pituitary the levels of r-erbA beta-1 mRNA increase, whereas the levels of the pituitary-specific r-erbA beta-2 mRNA decrease with T3 treatment. In heart, kidney, liver, and brain the levels of r-erbA beta-1 are unaffected by thyroidal status. The levels of both r-erbA alpha mRNAs decrease with T3 treatment in all tissues examined except for the brain, where there is no change. In addition, we find that changes in the mRNAs encoding specific subpopulations of T3 receptors do not always parallel changes in total nuclear T3 binding. Differential regulation of the specific c-erbA mRNA species could have important consequences for T3 action
    corecore