4,358 research outputs found
Recommended from our members
An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets
The Arctic is becoming more accessible as sea ice extent continues to decline, resulting in higher human exposure to Arctic storms. This study compares Arctic storm characteristics between the ECMWF-Interim Reanalysis, 55-year Japanese Reanalysis, NASA-Modern Era Retrospective Analysis for Research and Applications Version 2 and National Centre for Environmental Prediction-Climate Forecast System Reanalysis datasets between 1980 and 2017, in winter (DJF) and summer (JJA). It is shown that Arctic storm characteristics are sensitive to the variable used for storm tracking. Arctic storm frequency is found to be similar in summer and winter when using sea level pressure minima to track Arctic storms, whereas, the storm frequency is found to be higher in winter than summer when using 850 hPa relative vorticity to track storms, based on using the same storm tracking algorithm. It is also found that there are no significant trends in Arctic storm characteristics between 1980 and 2017. Given the sparsity of observations in the Arctic, it might be expected that there are large differences in Arctic storm characteristics between the reanalysis datasets. Though, some similar Arctic storm characteristics are found between the reanalysis datasets, it is found that the differences in Arctic storm characteristics between the reanalysis datasets are generally higher in winter than in summer. Overall, the results show that there are differences in Arctic storm characteristics between reanalysis datasets, but even larger differences can arise between using 850 hPa relative vorticity or mean sea level pressure as the storm tracking variable, which adds to the uncertainty associated with current Arctic storm characteristics
ADR and Justice in consumer disputes in the EU
This policy brief reports on the main conclusions from an international conference held at Wolfson College, Oxford on 18–20 April 2016, at which representatives from seven governments, ombudsmen, and academic experts assessed efforts to implement new dispute resolution mechanisms across EU Member States.
The briefing also assesses the levels of trust the public holds in ombudsmen, and what drives this trust. It finds a number of mechanisms under development, and makes a range of recommendations for future approaches
H - T phase diagram of YbCo2Si2 with H // [100]
We report on the first high-resolution dc-magnetisation () measurements on
a single crystal of \ycs. was measured down to 0.05 K and in fields up to
12 T, with the magnetic field parallel to the crystallographic direction
[100]. Two antiferromagnetic (AFM) phase transitions have been detected in a
field T at K and K, in form of a
sharp cusp and a sudden drop in , respectively. These signatures
suggest that the phase transitions are order at and
order at . The upper transition is suppressed by a critical field
T. The field-dependent magnetisation shows two hysteretic
metamagnetic-like steps at the lowest temperature, followed by a sharp kink,
which separates the AFM region from the paramagnetic one. The magnetic
phase diagram of \ycs has been deduced from the isothermal and isofield curves.
Four AFM regions were identified which are separated by and
order phase-transition lines.Comment: 5 Pages, 3 figure
Braneworld inflation from an effective field theory after WMAP three-year data
In light of the results from the WMAP three-year sky survey, we study an
inflationary model based on a single-field polynomial potential, with up to
quartic terms in the inflaton field. Our analysis is performed in the context
of the Randall-Sundrum II braneworld theory, and we consider both the
high-energy and low-energy (i.e. the standard cosmology case) limits of the
theory. We examine the parameter space of the model, which leads to both
large-field and small-field inflationary type solutions. We conclude that small
field inflation, for a potential with a negative mass square term, is in
general favored by current bounds on the tensor-to-scalar perturbation ratio
rs.Comment: 11 pages, 5 figures; references updated and a few comments added;
final version to appear in Phys. Rev.
Recommended from our members
How does dynamical downscaling affect model biases and future projections of explosive extratropical cyclones along North America’s Atlantic coast?
Explosive extratropical cyclones (EETCs) are rapidly intensifying low pressure systems that generate severe weather along North America’s Atlantic coast. Global climate models (GCMs) tend to simulate too few EETCs, perhaps partly due to their coarse horizontal resolution and poorly resolved moist diabatic processes. This study explores whether dynamical downscaling can reduce EETC frequency biases, and whether this affects future projections of storms along North America’s Atlantic coast. A regional climate model (CanRCM4) is forced with the CanESM2 GCM for the periods 1981 to 2000 and 2081 to 2100. EETCs are tracked from relative vorticity using an objective feature tracking algorithm. CanESM2 simulates 38% fewer EETC tracks compared to reanalysis data, which is consistent with a negative Eady growth rate bias (−0.1 day−1). Downscaling CanESM2 with CanRCM4 increases EETC frequency by one third, which reduces the frequency bias to −22%, and increases maximum EETC precipitation by 22%. Anthropogenic greenhouse gas forcing is projected to decrease EETC frequency (−15%, −18%) and Eady growth rate (−0.2 day−1, −0.2 day−1), and increase maximum EETC precipitation (46%, 52%) in CanESM2 and CanRCM4, respectively. The limited effect of dynamical downscaling on EETC frequency projections is consistent with the lack of impact on the maximum Eady growth rate. The coarse spatial resolution of GCMs presents an important limitation for simulating extreme ETCs, but Eady growth rate biases are likely just as relevant. Further bias reductions could be achieved by addressing processes that lead to an underestimation of lower tropospheric meridional temperature gradients
Constructing the Tree-Level Yang-Mills S-Matrix Using Complex Factorization
A remarkable connection between BCFW recursion relations and constraints on
the S-matrix was made by Benincasa and Cachazo in 0705.4305, who noted that
mutual consistency of different BCFW constructions of four-particle amplitudes
generates non-trivial (but familiar) constraints on three-particle coupling
constants --- these include gauge invariance, the equivalence principle, and
the lack of non-trivial couplings for spins >2. These constraints can also be
derived with weaker assumptions, by demanding the existence of four-point
amplitudes that factorize properly in all unitarity limits with complex
momenta. From this starting point, we show that the BCFW prescription can be
interpreted as an algorithm for fully constructing a tree-level S-matrix, and
that complex factorization of general BCFW amplitudes follows from the
factorization of four-particle amplitudes. The allowed set of BCFW deformations
is identified, formulated entirely as a statement on the three-particle sector,
and using only complex factorization as a guide. Consequently, our analysis
based on the physical consistency of the S-matrix is entirely independent of
field theory. We analyze the case of pure Yang-Mills, and outline a proof for
gravity. For Yang-Mills, we also show that the well-known scaling behavior of
BCFW-deformed amplitudes at large z is a simple consequence of factorization.
For gravity, factorization in certain channels requires asymptotic behavior
~1/z^2.Comment: 35 pages, 6 figure
Recommended from our members
The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high resolution global climate model data
Extratropical cyclones are the most damaging natural hazard to affect western Europe. Serial clustering occurs when many intense cyclones affect one specific geographic region in a short period of time which can potentially lead to very large seasonal losses. Previous studies have shown that intense cyclones may be more likely to cluster than less intense cyclones. We revisit this topic using a high resolution climate model with the aim to determine how important clustering is for windstorm related losses.
The role of windstorm clustering is investigated using a quantifiable metric (storm severity index, SSI) that is based on near surface meteorological variables (10-metre wind speed) and is a good proxy for losses. The SSI is used to convert a wind footprint into losses for individual windstorms or seasons. 918 years of a present-day ensemble of coupled climate model simulations from the High-Resolution Global Environment Model (HiGEM) are compared to ERA-Interim re-analysis. HiGEM is able to successfully reproduce the wintertime North Atlantic/European circulation, and represent the large-scale circulation associated with the serial clustering of European windstorms. We use two measures to identify any changes in the contribution of clustering to the seasonal windstorm loss as a function of return period.
Above a return period of 3 years, the accumulated seasonal loss from HiGEM is up to 20% larger than the accumulated seasonal loss from a set of random resamples of the HiGEM data. Seasonal losses are increased by 10-20% relative to randomised seasonal losses at a return period of 200 years. The contribution of the single largest event in a season to the accumulated seasonal loss does not change with return period, generally ranging between 25-50%.
Given the realistic dynamical representation of cyclone clustering in HiGEM, and comparable statistics to ERA-Interim, we conclude that our estimation of clustering and its dependence on the return period will be useful for informing the development of risk models for European windstorms, particularly for longer return periods
Method of Food Preparation Influences Blood Glucose Response to a High-Carbohydrate Meal: A Randomised Cross-over Trial
The aim of this study was to establish the blood glucose response to different cooking methods of pasta. Participants consumed three identical meals in a random order that were freshly cooked (hot), cooled and reheated. Blood glucose concentrations were assessed before, and every 15 min after ingestion of each meal for 120 min. There was a significant interaction between temperature and time (F (8.46–372.34) = 2.75, p = 0.005), with the reheated (90 min) condition returning to baseline faster than both cold (120 min) and hot conditions. Blood glucose area under the curve (AUC) was significantly lower in the reheated (703 ± 56 mmol·L−1·min−1) than the hot condition (735 ± 77 mmol·L−1·min−1, t (92) = −3.36, pbonferroni = 0.003), with no significant difference with the cold condition (722 ± 62 mmol·L−1·min−1). To our knowledge, the current study is the first to show that reheating pasta causes changes in post-prandial glucose response, with a quicker return to fasting levels in both the reheated and cooled conditions than the hot condition. The mechanisms behind the changes in post-prandial blood glucose seen in this study are most likely related to changes in starch structure and how these changes influence glycaemic response
Experimental Implementation of Logical Bell State Encoding
Liquid phase NMR is a general purpose test-bed for developing methods of
coherent control relevant to quantum information processing. Here we extend
these studies to the coherent control of logical qubits and in particular to
the unitary gates necessary to create entanglement between logical qubits. We
report an experimental implementation of a conditional logical gate between two
logical qubits that are each in decoherence free subspaces that protect the
quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure
- …