637 research outputs found

    Muscle fiber and motor unit behavior in the longest human skeletal muscle

    Get PDF
    The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers

    Locomotor muscle fatigue is not critically regulated after prior upper body exercise

    Get PDF
    This study examined the effects of prior upper body exercise on subsequent high-intensity cycling exercise tolerance and associated changes in neuromuscular function and perceptual responses. Eight men performed three fixed work-rate (85% peak power) cycling tests: 1) to the limit of tolerance (CYC); 2) to the limit of tolerance after prior high-intensity arm-cranking exercise (ARM-CYC); and 3) without prior exercise and for an equal duration as ARM-CYC (ISOTIME). Peripheral fatigue was assessed via changes in potentiated quadriceps twitch force during supramaximal electrical femoral nerve stimulation. Voluntary activation was assessed using twitch interpolation during maximal voluntary contractions. Cycling time during ARM-CYC and ISOTIME (4.33 ± 1.10 min) was 38% shorter than during CYC (7.46 ± 2.79 min) (P < 0.001). Twitch force decreased more after CYC (−38 ± 13%) than ARM-CYC (−26 ± 10%) (P = 0.004) and ISOTIME (−24 ± 10%) (P = 0.003). Voluntary activation was 94 ± 5% at rest and decreased after CYC (89 ± 9%, P = 0.012) and ARM-CYC (91 ± 8%, P = 0.047). Rating of perceived exertion for limb discomfort increased more quickly during cycling in ARM-CYC [1.83 ± 0.46 arbitrary units (AU)/min] than CYC (1.10 ± 0.38 AU/min, P = 0.003) and ISOTIME (1.05 ± 0.43 AU/min, P = 0.002), and this was correlated with the reduced cycling time in ARM-CYC (r = −0.72, P = 0.045). In conclusion, cycling exercise tolerance after prior upper body exercise is potentially mediated by central fatigue and intolerable levels of sensory perception rather than a critical peripheral fatigue limit

    Inter-examiner reproducibility of tests for lumbar motor control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies show a relation between reduced lumbar motor control (LMC) and low back pain (LBP). However, test circumstances vary and during test performance, subjects may change position. In other words, the reliability - i.e. reproducibility and validity - of tests for LMC should be based on quantitative data. This has not been considered before. The aim was to analyse the reproducibility of five different quantitative tests for LMC commonly used in daily clinical practice.</p> <p>Methods</p> <p>The five tests for LMC were: repositioning (RPS), sitting forward lean (SFL), sitting knee extension (SKE), and bent knee fall out (BKFO), all measured in cm, and leg lowering (LL), measured in mm Hg. A total of 40 subjects (14 males, 26 females) 25 with and 15 without LBP, with a mean age of 46.5 years (SD 14.8), were examined independently and in random order by two examiners on the same day. LBP subjects were recruited from three physiotherapy clinics with a connection to the clinic's gym or back-school. Non-LBP subjects were recruited from the clinic's staff acquaintances, and from patients without LBP.</p> <p>Results</p> <p>The means and standard deviations for each of the tests were 0.36 (0.27) cm for RPS, 1.01 (0.62) cm for SFL, 0.40 (0.29) cm for SKE, 1.07 (0.52) cm for BKFO, and 32.9 (7.1) mm Hg for LL. All five tests for LMC had reproducibility with the following ICCs: 0.90 for RPS, 0.96 for SFL, 0.96 for SKE, 0.94 for BKFO, and 0.98 for LL. Bland and Altman plots showed that most of the differences between examiners A and B were less than 0.20 cm.</p> <p>Conclusion</p> <p>These five tests for LMC displayed excellent reproducibility. However, the diagnostic accuracy of these tests needs to be addressed in larger cohorts of subjects, establishing values for the normal population. Also cut-points between subjects with and without LBP must be determined, taking into account age, level of activity, degree of impairment and participation in sports. Whether reproducibility of these tests is as good in daily clinical practice when used by untrained examiners also needs to be examined.</p

    Impact of movement training on upper limb motor strategies in persons with shoulder impingement syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Movement deficits, such as changes in the magnitude of scapulohumeral and scapulathoracic muscle activations or perturbations in the kinematics of the glenohumeral, sternoclavicular and scapulothoracic joints, have been observed in people with shoulder impingement syndrome. Movement training has been suggested as a mean to contribute to the improvement of the motor performance in persons with musculoskeletal impairments. However, the impact of movement training on the movement deficits of persons with shoulder impingement syndrome is still unknown. The aim of this study was to evaluate the short-term effects of supervised movement training with feedback on the motor strategies of persons with shoulder impingement syndrome.</p> <p>Methods</p> <p>Thirty-three subjects with shoulder impingement were recruited. They were involved in two visits, one day apart. During the first visit, supervised movement training with feedback was performed. The upper limb motor strategies were evaluated before, during, immediately after and 24 hours after movement training. They were characterized during reaching movements in the frontal plane by EMG activity of seven shoulder muscles and total excursion and final position of the wrist, elbow, shoulder, clavicle and trunk. Movement training consisted of reaching movements performed under the supervision of a physiotherapist who gave feedback aimed at restoring shoulder movements. One-way repeated measures ANOVAs were run to analyze the effect of movement training.</p> <p>Results</p> <p>During, immediately after and 24 hours after movement training with feedback, the EMG activity was significantly decreased compared to the baseline level. For the kinematics, total joint excursion of the trunk and final joint position of the trunk, shoulder and clavicle were significantly improved during and immediately after training compared to baseline. Twenty-four hours after supervised movement training, the kinematics of trunk, shoulder and clavicle were back to the baseline level.</p> <p>Conclusion</p> <p>Movement training with feedback brought changes in motor strategies and improved temporarily some aspects of the kinematics. However, one training session was not enough to bring permanent improvement in the kinematic patterns. These results demonstrate the potential of movement training in the rehabilitation of movement deficits associated with shoulder impingement syndrome.</p

    Isometric force production parameters during normal and experimental low back pain conditions

    Get PDF
    BACKGROUND: The control of force and its between-trial variability are often taken as critical determinants of motor performance. Subjects performed isometric trunk flexion and extension forces without and with experiment pain to examine if pain yields changes in the control of trunk forces. The objective of this study is to determine if experimental low back pain modifies trunk isometric force production. METHODS: Ten control subjects participated in this study. They were required to exert 50 and 75% of their isometric maximal trunk flexion and extension torque. In a learning phase preceding the non painful and painful trials, visual and verbal feedbacks were provided. Then, subjects were asked to perform 10 trials without any feedback. Time to peak torque, time to peak torque variability, peak torque variability as well as constant and absolute error in peak torque were calculated. Time to peak and peak dF/dt were computed to determine if the first peak of dF/dt could predict the peak torque achieved. RESULTS: Absolute and constant errors were higher in the presence of a painful electrical stimulation. Furthermore, peak torque variability for the higher level of force was increased with in the presence of experimental pain. The linear regressions between peak dF/dt, time to peak dF/dt and peak torque were similar for both conditions. Experimental low back pain yielded increased absolute and constant errors as well as a greater peak torque variability for the higher levels of force. The control strategy, however, remained the same between the non painful and painful condition. Cutaneous pain affects some isometric force production parameters but modifications of motor control strategies are not implemented spontaneously. CONCLUSIONS: It is hypothesized that adaptation of motor strategies to low back pain is implemented gradually over time. This would enable LBP patients to perform their daily tasks with presumably less pain and more accuracy

    Fascial tissue research in sports medicine: from molecules to tissue adaptation, injury and diagnostics.

    Get PDF
    The fascial system builds a three-dimensional continuum of soft, collagen-containing, loose and dense fibrous connective tissue that permeates the body and enables all body systems to operate in an integrated manner. Injuries to the fascial system cause a significant loss of performance in recreational exercise as well as high-performance sports, and could have a potential role in the development and perpetuation of musculoskeletal disorders, including lower back pain. Fascial tissues deserve more detailed attention in the field of sports medicine. A better understanding of their adaptation dynamics to mechanical loading as well as to biochemical conditions promises valuable improvements in terms of injury prevention, athletic performance and sports-related rehabilitation. This consensus statement reflects the state of knowledge regarding the role of fascial tissues in the discipline of sports medicine. It aims to (1) provide an overview of the contemporary state of knowledge regarding the fascial system from the microlevel (molecular and cellular responses) to the macrolevel (mechanical properties), (2) summarise the responses of the fascial system to altered loading (physical exercise), to injury and other physiological challenges including ageing, (3) outline the methods available to study the fascial system, and (4) highlight the contemporary view of interventions that target fascial tissue in sport and exercise medicine. Advancing this field will require a coordinated effort of researchers and clinicians combining mechanobiology, exercise physiology and improved assessment technologies
    • …
    corecore