77 research outputs found

    The impact of metallicity and X-rays on star formation

    Full text link
    Star formation is regulated through a variety of feedback processes. In this study, we treat feedback by metal injection and a UV background as well as by X-ray irradiation. Our aim is to investigate whether star formation is significantly affected when the ISM of a proto-galaxxy enjoys different metallicities and when a star forming cloud resides in the vicinity of a strong X-ray source. We perform cosmological Enzo simulations with a detailed treatment of non-zero metallicity chemistry and thermal balance. We also perform FLASH simulations with embedded Lagrangian sink particles of a collapsing molecular cloud near a massive, 10^{7} M\odot, black hole that produces X-ray radiation. We find that a multi-phase ISM forms for metallicites as small as 10^{-4} Solar at z = 6, with higher (10^{-2}Z\odot) metallicities supporting a cold ( 10^{3} cm^{-3}) phase at higher (z = 20) redshift. A star formation recipe based on the presence of a cold dense phase leads to a self-regulating mode in the presence of supernova and radiation feedback. We also find that when there is strong X-ray feedback a collapsing cloud fragments into larger clumps whereby fewer but more massive protostellar cores are formed. This is a consequence of the higher Jeans mass in the warm (50 K, due to ionization heating) molecular gas. Accretion processes dominate the mass function and a near-flat, non-Salpeter IMF results.Comment: Proceedings IAU Symposium No. 270, 2010. 4 pages, 5 figure

    Star formation near an obscured AGN: Variations in the initial mass function

    Get PDF
    The conditions that affect the formation of stars in radiatively and mechanically active environments are quite different than the conditions that apply to our local interstellar neighborhood. In such galactic environments, a variety of feedback processes can play a significant role in shaping the initial mass function (IMF). Here, we present a numerical study on the effects of an accreting black hole and the influence of nearby massive stars to a collapsing, 800 M_sun, molecular cloud at 10 pc distance from the black hole. We parametrize and study radiative feedback effects of hard X-rays emanating from the black hole broad line region, increased cosmic ray rates due to supernovae in starbursts, and strong UV radiation produced by nearby massive stars. We also investigate the importance of shear from the supermassive, 10^6-10^8 M_sun, black hole as the star-forming cloud orbits around it. We find that thermal pressure from X-rays compresses the cloud, which induces a high star formation rate early on, but reduces the overall star formation efficiency to about 7% due to gas depletion by evaporation. We see that the turn-over mass of the IMF increases up to a factor of 2.3, M_turn = 1-1.5 M_sun, for the model with the highest X-ray flux (160 erg s^-1 cm^-2), while the high-mass slope of the IMF becomes Gamma > -1. This results in more high mass stars and a non-Salpeter IMF. Cosmic rays penetrate deeply into the cloud and increase the gas temperature (50-200 K), which leads to a reduced formation efficiency of low mass stars. High cosmic ray rates increase the average mass of stars, thereby shifting the turn-over mass to higher values, i.e., up to several solar masses. Due to this process, the onset of star formation is also delayed. We conclude that the IMF inside active galaxies is different than the one obtained from local environments.Comment: 25 pages, 17 figure

    Interplay of gas and ice during cloud evolution

    Get PDF
    During the evolution of diffuse clouds to molecular clouds, gas-phase molecules freeze out on surfaces of small dust particles to form ices. On dust surfaces, water is the main constituent of the icy mantle in which a complex chemistry is taking place. We aim to study the formation pathways and the composition of the ices throughout the evolution of diffuse clouds. For this purpose, we use time-dependent rate equations to calculate the molecular abundances in both gas phase and on solid surfaces (onto dust grains). We fully consider the gas-dust interplay by including the details of freeze-out, chemical and thermal desorption, as well as the most important photo-processes on grain surfaces. The difference in binding energies of chemical species on bare and icy surfaces is also incorporated into our equations. Using the numerical code FLASH, we perform a hydrodynamical simulation of a gravitationally bound diffuse cloud and follow its contraction. We find that while the dust grains are still bare, water formation is enhanced by grain surface chemistry which is subsequently released into the gas phase, enriching the molecular medium. The CO molecules, on the other hand, tend to freeze out gradually on bare grains. This causes CO to be well mixed and strongly present within the first ice layer. Once one monolayer of water ice has formed, the binding energy of the grain surface changes significantly and an immediate and strong depletion of gas-phase water and CO molecules occur. While hydrogenation converts solid CO into formaldehyde (H2_2CO) and methanol (CH3_3OH), water ice becomes the main constituent of the icy grains. Inside molecular clumps formaldehyde is more abundant than water and methanol in the gas phase owing its presence in part to chemical desorption.Comment: 19 pages, 10 figures, 9 tables, 23 equations. Accepted for publication Astronomy & Astrophysics. In version 3: Language edit, added gas-phase reaction tables, title has change

    The impact of freeze-out on collapsing molecular clouds

    Get PDF
    Atoms and molecules, and in particular CO, are important coolants during the evolution of interstellar star-forming gas clouds. The presence of dust grains, which allow many chemical reactions to occur on their surfaces, strongly impacts the chemical composition of a cloud. At low temperatures, dust grains can lock-up species from the gas phase which freeze out and form ices. In this sense, dust can deplete important coolants. Our aim is to understand the effects of freeze-out on the thermal balance and the evolution of a gravitationally bound molecular cloud. For this purpose, we perform 3D hydrodynamical simulations with the adaptive mesh code FLASH. We simulate a gravitationally unstable cloud under two different conditions, with and without grain surface chemistry. We let the cloud evolve until one free-fall time is reached and track the thermal evolution and the abundances of species during this time. We see that at a number density of 104^4 cm3^{-3} most of the CO molecules are frozen on dust grains in the run with grain surface chemistry, thereby depriving the most important coolant. As a consequence, we find that the temperature of the gas rises up to \sim25 K. The temperature drops once again due to gas-grain collisional cooling when the density reaches a few×\times104^4 cm3^{-3}. We conclude that grain surface chemistry not only affects the chemical abundances in the gas phase, but also leaves a distinct imprint in the thermal evolution that impacts the fragmentation of a star-forming cloud. As a final step, we present the equation of state of a collapsing molecular cloud that has grain surface chemistry included.Comment: Increased the number of significant digits in EQ 2. It mattered. Accepted for publication in MNRAS letter

    Chemical fractionation of deuterium in the protosolar nebula

    Full text link
    Understanding gas-grain chemistry of deuterium in star-forming objects may help to explain their history and present state. We aim to clarify how processes in ices affect the deuterium fractionation. In this regard, we investigate a Solar-mass protostellar envelope using an astrochemical rate-equation model that considers bulk-ice chem- istry. The results show a general agreement with the molecular D/H abundance ratios observed in low-mass protostars. The simultaneous processes of ice accumulation and rapid synthesis of HD on grain surfaces in the prestellar core hampers the deuteration of icy species. The observed very high D/H ratios exceeding 10 per cent, i.e., super- deuteration, are reproduced for formaldehyde and dimethyl ether, but not for other species in the protostellar envelope phase. Chemical transformations in bulk ice lower D/H ratios of icy species and do not help explaining the super-deuteration. In the protostellar phase, the D2O/HDO abundance ratio was calculated to be higher than the HDO/H2O ratio owing to gas-phase chemistry. Species that undergo evaporation from ices have high molecular D/H ratio and a high gas-phase abundance.Comment: 11 pages, 4 tables, 6 figures; +3 figures in appendix. Accepted for publication in MNRA

    Dust as interstellar catalyst I. Quantifying the chemical desorption process

    Get PDF
    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV and CR induced photons do not account for such processes. Aims. The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included into astrochemical models. Methods. We present a collection of experimental results of more than 10 reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice are used. We derive a formula to reproduce the efficiencies of the chemical desorption process, which considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II we extend these results to astrophysical conditions. Results. The equipartition of energy describes correctly the chemical desorption process on bare surfaces. On icy surfaces, the chemical desorption process is much less efficient and a better description of the interaction with the surface is still needed. Conclusions. We show that the mechanism that directly transforms solid species to gas phase species is efficient for many reactions.Comment: Accepted for publication in A&

    Dust temperature and time-dependent effects in the chemistry of photodissociation regions

    Get PDF
    When studying the chemistry of PDRs, time dependence becomes important as visual extinction increases, since certain chemical timescales are comparable to the cloud lifetime. Dust temperature is also a key factor, since it significantly influences gas temperature and mobility on dust grains, determining the chemistry occurring on grain surfaces. We present a study of the dust temperature impact and time effects on the chemistry of different PDRs, using an updated version of the Meijerink PDR code and combining it with the time-dependent code Nahoon. We find the largest temperature effects in the inner regions of high GG0_{\mathrm{0}} PDRs, where high dust temperatures favour the formation of simple oxygen-bearing molecules (especially that of O2_2), while the formation of complex organic molecules is much more efficient at low dust temperatures. We also find that time-dependent effects strongly depend on the PDR type, since long timescales promote the destruction of oxygen-bearing molecules in the inner parts of low GG0_{\mathrm{0}} PDRs, while favouring their formation and that of carbon-bearing molecules in high GG0_{\mathrm{0}} PDRs. From the chemical evolution, we also conclude that, in dense PDRs, CO2_2 is a late-forming ice compared to water ice, and confirm a layered ice structure on dust grains, with H2_2O in lower layers than CO2_2. Regarding steady state, the PDR edge reaches chemical equilibrium at early times (\lesssim105^5 yr). This time is even shorter (<<104^4 yr) for high GG0_{\mathrm{0}} PDRs. By contrast, inner regions reach equilibrium much later, especially low GG0_{\mathrm{0}} PDRs, where steady state is reached at \sim106^6-107^7 yr.Comment: 24 pages, 15 figures, 9 table

    The asymmetric radio structure and record jet of giant quasar 4C 34.47

    Get PDF
    Giant double-lobed radio source 4C34.47 displays a straight one-sided jet, measuring a record length of 380kpc, in its double-lobed radio structure. Assuming an intrinsically symmetric two-sided jet structure the radio source jet axis must be at least 33 degrees away from the sky plane, that is within 57 degrees from the line of sight. The radio polarization properties indicate that this giant source has largely outgrown the depolarizing halo generally associated with the host galaxies of powerful radio sources. The measured small depolarization asymmetry is nevertheless in accordance with its inferred orientation. All data for this giant radio source are in agreement with its preferred orientation as predicted within the unification scheme for powerful radio sources. Seen under a small aspect angle the radio source is large but not excessively large. The global properties of 4C34.47 do not differ from other giant (old) FR2 radio sources: it is a slowly expanding low-luminosity radio source.Comment: Accepted for publication in Astronomy and Astrophysic

    The first frost in the Pipe Nebula

    Get PDF
    Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. The water ice absorption is positively detected at 3.0 micron in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same visual extinction. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 micron as well. The fractional abundance of CO ice with respect to water ice is 16+7-6 %, and about half as much as the values typically seen in low-mass star-forming regions. A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation.Comment: 17 pages, 8 figures, accepted by A&
    corecore