172 research outputs found

    On the chimerical nature of the membrane-bound ATPase from halobacterium saccharovorum

    Get PDF
    A series of experiments are described that were carried out with the goal of determining how the membrane-bound ATPase from H. saccharovorum is related to V- and F-type ATPases. They reflect three approaches: the use of inhibitors; structural studies; and immunological relatedness

    The effect of sterilization on biological, organic geochemical and morphological information in natural samples

    Get PDF
    The loss of biological, organic geochemical, and morphological science information that may occur should a Mars surface sample be sterilized prior to return to earth is examined. Results of experimental studies are summarized

    Locomotion modulates specific functional cell types in the mouse visual thalamus

    Get PDF
    The visual system is composed of diverse cell types that encode distinct aspects of the visual scene and may form separate processing channels. Here we present further evidence for that hypothesis whereby functional cell groups in the dorsal lateral geniculate nucleus (dLGN) are differentially modulated during behavior. Using simultaneous multi-electrode recordings in dLGN and primary visual cortex (V1) of behaving mice, we characterized the impact of locomotor activity on response amplitude, variability, correlation and spatiotemporal tuning. Locomotion strongly impacts the amplitudes of dLGN and V1 responses but the effects on variability and correlations are relatively minor. With regards to tunings, locomotion enhances dLGN responses to high temporal frequencies, preferentially affecting ON transient cells and neurons with nonlinear responses to high spatial frequencies. Channel specific modulations may serve to highlight particular visual inputs during active behaviors

    Visual Exploration and Object Recognition by Lattice Deformation

    Get PDF
    Mechanisms of explicit object recognition are often difficult to investigate and require stimuli with controlled features whose expression can be manipulated in a precise quantitative fashion. Here, we developed a novel method (called “Dots”), for generating visual stimuli, which is based on the progressive deformation of a regular lattice of dots, driven by local contour information from images of objects. By applying progressively larger deformation to the lattice, the latter conveys progressively more information about the target object. Stimuli generated with the presented method enable a precise control of object-related information content while preserving low-level image statistics, globally, and affecting them only little, locally. We show that such stimuli are useful for investigating object recognition under a naturalistic setting – free visual exploration – enabling a clear dissociation between object detection and explicit recognition. Using the introduced stimuli, we show that top-down modulation induced by previous exposure to target objects can greatly influence perceptual decisions, lowering perceptual thresholds not only for object recognition but also for object detection (visual hysteresis). Visual hysteresis is target-specific, its expression and magnitude depending on the identity of individual objects. Relying on the particular features of dot stimuli and on eye-tracking measurements, we further demonstrate that top-down processes guide visual exploration, controlling how visual information is integrated by successive fixations. Prior knowledge about objects can guide saccades/fixations to sample locations that are supposed to be highly informative, even when the actual information is missing from those locations in the stimulus. The duration of individual fixations is modulated by the novelty and difficulty of the stimulus, likely reflecting cognitive demand

    Biology of moderately halophilic aerobic bacteria

    Get PDF
    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms

    Roles of contour and surface processing in microgenesis of object perception and visual consciousness

    Get PDF
    Developments in visual neuroscience and neural-network modeling indicate the existence of separate pathways for the processing of form and surface attributes of a visual object. In line with prior theoretical proposals, it is assumed that the processing of form can be explicit or conscious only as or after the surface property such as color is filled in. In conjunction with extant psychophysical findings, these developments point to interesting distinctions between nonconscious and conscious processing of these attributes, specifically in relation to distinguishable temporal dynamics. At nonconscious levels form processing proceeds faster than surface processing, whereas in contrast, at conscious levels form processing proceeds slower than surface processing. I mplications of separate form and surface processing for current and future psychophysical and neuroscientific research, particularly that relating cortical oscillations to conjunctions of surface and form features, and for cognitive science and philosophy of mind and consciousness are discussed

    Psychoneural Isomorphism: From Metaphysics to Robustness

    Get PDF
    At the beginning of the 20th century, Gestalt psychologists put forward the concept of psychoneural isomorphism, which was meant to replace Fechner’s obscure notion of psychophysical parallelism and provide a heuristics that may facilitate the search for the neural correlates of the mind. However, the concept has generated much confusion in the debate, and today its role is still unclear. In this contribution, I will attempt a little conceptual spadework in clarifying the concept of psychoneural isomorphism, focusing exclusively on conscious visual perceptual experience and its neural correlates. Firstly, I will outline the history of our concept, and its alleged metaphysical and epistemic roles. Then, I will clarify the nature of isomorphism and rule out its metaphysical role. Finally, I will review some epistemic roles of our concept, zooming in on the work of Jean Petitot, and suggest that it does not play a relevant heuristic role. I conclude suggesting that psychoneural isomorphism might be an indicator of robustness for certain mathematical descriptions of perceptual content
    corecore