566 research outputs found

    Exploiting the directional sensitivity of the Double Chooz near detector

    Full text link
    In scintillator detectors, the forward displacement of the neutron in the reaction νˉe+p→e++n\bar\nu_e+p\to e^++n provides neutrino directional information as demonstrated by the CHOOZ reactor experiment with 2,500 events. The near detector of the forthcoming Double Chooz experiment will collect 1.6×1051.6\times10^5 events per year, enough to determine the average neutrino direction with a 1σ1 \sigma half-cone aperture of 2.3∘2.3^\circ in one year. It is more difficult to separate the two Chooz reactors that are viewed at a separation angle ϕ=30∘\phi=30^\circ. If their strengths are known and approximately equal, the azimuthal location of each reactor is obtained with ±6∘\pm6^\circ (1σ1 \sigma) and the probability of confusing them with a single source is less than 11%. Five year's data reduce this ``confusion probability'' to less than 0.3%, i.e., a 3σ3 \sigma separation is possible. All of these numbers improve rapidly with increasing angular separation of the sources. For a setup with ϕ=90∘\phi=90^\circ and one year's data, the azimuthal 1σ1 \sigma uncertainty for each source decreases to ±3.2∘\pm3.2^\circ. Of course, for Double Chooz the two reactor locations are known, allowing one instead to measure their individual one-year integrated power output to ±11\pm11% (1σ1 \sigma), and their five-year integrated output to ±4.8\pm4.8% (1σ1 \sigma).Comment: 7 pages, 10 figure

    Probing the Earth's interior with a large-volume liquid scintillator detector

    Full text link
    A future large-volume liquid scintillator detector would provide a high-statistics measurement of terrestrial antineutrinos originating from β\beta-decays of the uranium and thorium chains. In addition, the forward displacement of the neutron in the detection reaction νˉe+p→n+e+\bar\nu_e+p\to n+e^+ provides directional information. We investigate the requirements on such detectors to distinguish between certain geophysical models on the basis of the angular dependence of the geoneutrino flux. Our analysis is based on a Monte-Carlo simulation with different levels of light yield, considering both unloaded and gadolinium-loaded scintillators. We find that a 50 kt detector such as the proposed LENA (Low Energy Neutrino Astronomy) will detect deviations from isotropy of the geoneutrino flux significantly. However, with an unloaded scintillator the time needed for a useful discrimination between different geophysical models is too large if one uses the directional information alone. A Gd-loaded scintillator improves the situation considerably, although a 50 kt detector would still need several decades to distinguish between a geophysical reference model and one with a large neutrino source in the Earth's core. However, a high-statistics measurement of the total geoneutrino flux and its spectrum still provides an extremely useful glance at the Earth's interior.Comment: 21 pages, 9 figures. Minor changes, version accepted for publication in Astroparticle Physic

    Effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to post-harvest proliferation of Salmonella enterica

    Get PDF
    Fresh fruits and vegetables are increasingly recognized as vehicles of salmonellosis. Pre- and post-harvest environmental conditions, and physiological, and genetic factors are thought to contribute to the ability of human pathogens to persist in the production environment, attach to, colonize and proliferate in and on raw produce. How field production conditions affect the post-harvest food safety outcomes is not entirely understood. This study tested how varying nitrogen and potassium fertilization levels affected the "susceptibility" of tomatoes to Salmonella infections following the harvest of fruits. Two tomato varieties grown over three seasons under high, medium, and low levels of nitrogen and potassium fertilization in two locations were inoculated with seven strains of Salmonella. Even though the main effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to infections with Salmonella enterica were not statistically significant overall, differences in nitrogen concentrations in plant tissues correlated with the susceptibility of partially ripe tomatoes (cv. Solar Fire) to Salmonella. Tomato maturity and the season in which tomatoes were produced had the strongest effect on the ability of Salmonella to multiply in tomatoes. Tomato phenolics, accumulation of which is known to correlate with rates of the N fertilization, did not inhibit growth of Salmonella in vitro

    Factors that affect proliferation of Salmonella in tomatoes post-harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype

    Get PDF
    MAIN OBJECTIVES: Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. EXPERIMENTAL DESIGN: Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey's multiple comparison testing procedure. MOST IMPORTANT DISCOVERIES AND SIGNIFICANCE: The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth

    Low and High Energy Phenomenology of Quark-Lepton Complementarity Scenarios

    Full text link
    We conduct a detailed analysis of the phenomenology of two predictive see-saw scenarios leading to Quark-Lepton Complementarity. In both cases we discuss the neutrino mixing observables and their correlations, neutrinoless double beta decay and lepton flavor violating decays such as mu -> e gamma. We also comment on leptogenesis. The first scenario is disfavored on the level of one to two standard deviations, in particular due to its prediction for U_{e3}. There can be resonant leptogenesis with quasi-degenerate heavy and light neutrinos, which would imply sizable cancellations in neutrinoless double beta decay. The decays mu -> e gamma and tau -> mu gamma are typically observable unless the SUSY masses approach the TeV scale. In the second scenario leptogenesis is impossible. It is however in perfect agreement with all oscillation data. The prediction for mu -> e gamma is in general too large, unless the SUSY masses are in the range of several TeV. In this case tau -> e gamma and tau -> mu gamma are unobservable.Comment: 32 pages, 9 figures. Discussion on leptogenesis changed due to inclusion of flavor effects. To appear in PR

    High relative humidity pre-harvest reduces post-harvest proliferation of Salmonella in tomatoes

    Get PDF
    Outbreaks of human illness caused by enteric pathogens such as Salmonella are increasingly linked to the consumption of fruits and vegetables. Knowledge on the factors affecting Salmonella proliferation on fresh produce therefore becomes increasingly important to safeguard public health. Previous experiments showed a limited impact of pre-harvest production practices on Salmonella proliferation on tomatoes, but suggested a significant effect of harvest time. We explored the data from two previously published and one unpublished experiment using regression trees, which allowed overcoming the interpretational difficulties of classical statistical models with higher order interactions. We assessed the effect of harvest time by explicitly modeling the climatic conditions at harvest time and by performing confirmatory laboratory experiments. Across all datasets, regression trees confirmed the dominant effect of harvest time on Salmonella proliferation, with humidity-related factors emerging as the most important underlying climatic factors. High relative humidity the week prior to harvest was consistently associated with lower Salmonella proliferation. A controlled lab experiment confirmed that tomatoes containing their native epimicrobiota supported significantly lower Salmonella proliferation when incubated at higher humidity prior to inoculation. The complex interactions between environmental conditions and the native microbiota of the tomato crop remain to be fully understood

    Axion searches with Fermi and IACTs

    Full text link
    Axion Like Particles (ALPs), postulated to solve the strong-CP problem, are predicted to couple with photons in the presence of magnetic fields, which may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we simultaneously consider in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. We show that photon/axion mixing could explain recent puzzles regarding the observed spectra of distant gamma-ray sources as well as the recently published lower limit to the EBL intensity. We finally summarize the different signatures expected and discuss the best strategy to search for ALPs with the Fermi satellite and current Cherenkov telescopes like CANGAROO, HESS, MAGIC and VERITAS.Comment: 4 pages, 4 figures. To appear in the proceedings of the "2nd Roma International Conference on Astroparticle Physics", Villa Mondragone, Rome, Italy, May 13-15 200

    Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    Full text link
    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate geoneutrino flux. In this model the neutrino generation is dominated by decays in the Earth's mantle and crust; this leads to a very ``peripheral'' angular distribution, in which 2/3 of the neutrinos come from angles > 60 degrees away from the downward vertical. We note the possibility of that the Earth's core contains potassium; different geophysical predictions lead to strongly varying, and hence distinguishable, central intensities (< 30 degrees from the downward vertical). Other uncertainties in the models, and prospects for observation of the geoneutrino angular distribution, are briefly discussed. We conclude by urging the development and construction of antineutrino experiments with angular sensitivity. (Abstract abridged.)Comment: 25 pages, RevTeX, 7 figures. Comments welcom
    • …
    corecore