5,540 research outputs found

    Superconducting Detectors for Super Light Dark Matter

    Get PDF
    We propose and study a new class of superconducting detectors which are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark matter limit, mX > keV. We compute the rate of dark matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological/astrophysical constraints could be detected by such detectors with a moderate size exposure.Comment: 6 pages, 2 figures; v2: improved detection discussion, modified benchmark mode

    Photodetection in silicon beyond the band edge with surface states

    Get PDF
    Silicon is an extremely attractive material platform for integrated optics at telecommunications wavelengths, particularly for integration with CMOS circuits. Developing detectors and electrically pumped lasers at telecom wavelengths are the two main technological hurdles before silicon can become a comprehensive platform for integrated optics. We report on the generation of free carriers in unimplanted SOI ridge waveguides, which we attribute to surface state absorption. By electrically contacting the waveguides, a photodetector with a responsivity of 36 mA/W and quantum efficiency of 2.8% is demonstrated. The photoconductive effect is shown to have minimal falloff at speeds of up to 60 Mhz

    Low-energy electron beam focusing in self-organized porous alumina vacuum windows

    Get PDF
    Micromachined, micron-thick porous alumina membranes with closed pore endings show high electron transparency above an energy of 5 keV. This is due to the channeling of electrons along the negatively charged insulating pores after surmounting the thin entrance layer. We also find a sharp hightransparency energy window at energies as low as 2 keV which may be the result of a local maximum of channeling, as predicted by simulations, and positive charge up of the entrance layer causing electron electrostatic focusing. Applications for these membranes range from atmospheric electron spectroscopy to self-assembled, nanoscale, large-area electron collimators

    Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides

    Get PDF
    We describe the design of a silicon-based source for radiation in the 0.5-14 THz regime. This new class of devices will permit continuously tunable, milliwatt scale, cw, room temperature operation, a substantial advance over currently available technologies. Our silicon terahertz generator consists of a silicon waveguide for near-infrared radiation, contained within a metal waveguide for terahertz radiation. A nonlinear polymer cladding permits two near-infrared lasers to mix, and through difference-frequency generation produces terahertz output. The small dimensions of the design greatly increase the optical fields, enhancing the nonlinear effect. The design can also be used to detect terahertz radiation

    Detecting Superlight Dark Matter with Fermi-Degenerate Materials

    Get PDF
    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of such light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ~10^-3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.Comment: 40 pages, 10 figures; v2: updated figures, matches published versio

    Tolman wormholes violate the strong energy condition

    Get PDF
    For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define the bounce in terms of a three-dimensional edgeless achronal spacelike hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at and near the bounce and to derive general theorems regarding violations of the energy conditions--theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the highly symmetric FRW-based subclass of Tolman wormholes. [For example: even under the mildest of hypotheses, the strong energy condition (SEC) must be violated.] Alternatively, one can dispense with the minimal volume condition and define a generic bounce entirely in terms of the motion of test particles (future-pointing timelike geodesics), by looking at the expansion of their timelike geodesic congruences. One re-confirms that the SEC must be violated at or near the bounce. In contrast, it is easy to arrange for all the other standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.

    Spatio-temporal patterns driven by autocatalytic internal reaction noise

    Get PDF
    The influence that intrinsic local density fluctuations can have on solutions of mean-field reaction-diffusion models is investigated numerically by means of the spatial patterns arising from two species that react and diffuse in the presence of strong internal reaction noise. The dynamics of the Gray-Scott (GS) model with constant external source is first cast in terms of a continuum field theory representing the corresponding master equation. We then derive a Langevin description of the field theory and use these stochastic differential equations in our simulations. The nature of the multiplicative noise is specified exactly without recourse to assumptions and turns out to be of the same order as the reaction itself, and thus cannot be treated as a small perturbation. Many of the complex patterns obtained in the absence of noise for the GS model are completely obliterated by these strong internal fluctuations, but we find novel spatial patterns induced by this reaction noise in regions of parameter space that otherwise correspond to homogeneous solutions when fluctuations are not included.Comment: 12 pages, 18 figure

    Dynamic wormholes

    Full text link
    A new framework is proposed for general dynamic wormholes, unifying them with black holes. Both are generically defined locally by outer trapping horizons, temporal for wormholes and spatial or null for black and white holes. Thus wormhole horizons are two-way traversible, while black-hole and white-hole horizons are only one-way traversible. It follows from the Einstein equation that the null energy condition is violated everywhere on a generic wormhole horizon. It is suggested that quantum inequalities constraining negative energy break down at such horizons. Wormhole dynamics can be developed as for black-hole dynamics, including a reversed second law and a first law involving a definition of wormhole surface gravity. Since the causal nature of a horizon can change, being spatial under positive energy and temporal under sufficient negative energy, black holes and wormholes are interconvertible. In particular, if a wormhole's negative-energy source fails, it may collapse into a black hole. Conversely, irradiating a black-hole horizon with negative energy could convert it into a wormhole horizon. This also suggests a possible final state of black-hole evaporation: a stationary wormhole. The new framework allows a fully dynamical description of the operation of a wormhole for practical transport, including the back-reaction of the transported matter on the wormhole. As an example of a matter model, a Klein-Gordon field with negative gravitational coupling is a source for a static wormhole of Morris & Thorne.Comment: 5 revtex pages, 4 eps figures. Minor change which did not reach publisher

    Wormhole Cosmology and the Horizon Problem

    Full text link
    We construct an explicit class of dynamic lorentzian wormholes connecting Friedmann-Robertson-Walker (FRW) spacetimes. These wormholes can allow two-way transmission of signals between spatially separated regions of spacetime and could permit such regions to come into thermal contact. The cosmology of a network of early Universe wormholes is discussed.Comment: 13 pages, in RevTe
    • …
    corecore