A new framework is proposed for general dynamic wormholes, unifying them with
black holes. Both are generically defined locally by outer trapping horizons,
temporal for wormholes and spatial or null for black and white holes. Thus
wormhole horizons are two-way traversible, while black-hole and white-hole
horizons are only one-way traversible. It follows from the Einstein equation
that the null energy condition is violated everywhere on a generic wormhole
horizon. It is suggested that quantum inequalities constraining negative energy
break down at such horizons. Wormhole dynamics can be developed as for
black-hole dynamics, including a reversed second law and a first law involving
a definition of wormhole surface gravity. Since the causal nature of a horizon
can change, being spatial under positive energy and temporal under sufficient
negative energy, black holes and wormholes are interconvertible. In particular,
if a wormhole's negative-energy source fails, it may collapse into a black
hole. Conversely, irradiating a black-hole horizon with negative energy could
convert it into a wormhole horizon. This also suggests a possible final state
of black-hole evaporation: a stationary wormhole. The new framework allows a
fully dynamical description of the operation of a wormhole for practical
transport, including the back-reaction of the transported matter on the
wormhole. As an example of a matter model, a Klein-Gordon field with negative
gravitational coupling is a source for a static wormhole of Morris & Thorne.Comment: 5 revtex pages, 4 eps figures. Minor change which did not reach
publisher