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The influence that intrinsic local-density fluctuations can have on solutions of mean-field
reaction-diffusion models is investigated numerically by means of the spatial patterns arising from
two species that react and diffuse in the presence of strong internal reaction noise. The dynamics of
the Gray–ScottsGSd model fP. Gray and S. K. Scott, Chem. Eng. Sci.38, 29 s1983d; 39, 1087
s1984d; J. Phys. Chem.89, 22 s1985dg with a constant external source is first cast in terms of a
continuum field theory representing the corresponding master equation. We then derive a Langevin
description of the field theory and use these stochastic differential equations in our simulations. The
nature of the multiplicative noise is specified exactly without recourse to assumptions and turns out
to be of the same order as the reaction itself, and thus cannot be treated as a small perturbation.
Many of the complex patterns obtained in the absence of noise for the GS model are completely
obliterated by these strong internal fluctuations, but we find novel spatial patterns induced by this
reaction noise in the regions of parameter space that otherwise correspond to homogeneous
solutions when fluctuations are not included. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1900092g

I. INTRODUCTION

General interest in the spatiotemporal pattern formation
problem stems from its wide application to self-organization
phenomena in fields as diverse as physics and chemistry,1 to
biology,2 and materials science.3 One of the simplest models
of biochemical relevance leading to spatial and temporal pat-
terns when diffusion is included is that due to Gray and Scott
sGSd.4 Numerical simulations of the deterministic GS system
have revealed a rich set of strikingly complex and irregular
patterns.5 In these mean-field approximations of chemical
species that diffuse and react, the fluctuations are completely
ignored. It is well known that if the spacial dimensionalityd
of the system is smaller than a certain upper critical dimen-
siondc, the intrinsic fluctuations play an important role in the
late time asymptotic behavior and the results obtained from
the mean-field equations are not correct.6 Fluctuations can
also influence the dynamics on local spatial and temporal
scales.7 Indeed, it is well established nowadays that noise can
lead to an unsuspected variety of dynamical effects. Far from
being merely a perturbation to idealized deterministic behav-
ior or regarded as a bothersome source of randomness or
structural disruption, noise can induce counterintuitive dy-

namical changes, two examples of which include noise-
induced transitions8 and stochastic resonance.9

In view of these considerations, and regarding the pat-
terns obtained in the mean-field approximation, it is impor-
tant to understand how fluctuations affect the stability of an
established spatial pattern and in what way do the determin-
istic and stochastic effects compete. Fortunately, it is pos-
sible to include systematically the effects of microscopic
density fluctuations in such systems by starting with the cor-
responding master equation, representing this stochastic pro-
cess by second-quantized bosonic operators, and then pass-
ing to a path-integral representation to map the system onto a
continuum field theory.10,11In many cases, primarily for two-
body reactions, this field theory can be mappedexactlyonto
a Langevin equation description in which the noise is com-
pletely and rigorously specified.12 In other cases, primarily
for three-body reactions to which the GS system belongs, the
exact continuum field theory can be approximated by nonlin-
ear Langevin equations provided that the higher-order field
theory vertices are truncated. Since mean-field models of
pattern formation are generally of the reaction-diffusion
type,1–3,13it is useful to employ the Langevin description for
handling the fluctuations, as this allows for a direct compari-
son with the results obtained within the naive mean-field
approximation.

In this paper we use the standard mapping of the master
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equation to a stochastic field theory and use the latter to
obtain a set of approximate nonlinear Langevin equations in
order to be able to assess the nature and influence that inter-
nal reaction noise has on the spatial patterns obtained from
the purely deterministic GS model.

The remainder of this paper is organized as follows. In
Sec. II we introduce the chemical reactions defining the
Gray–Scott model and derive a field-theoretic description of
these reactions by means of the Doi–Peliti formalism.10,11

Once we obtain the continuum action, we derive an approxi-
mate Langevin equation description of the GS model. The
advantage of this is that the noise properties are specified
automatically and indicate how the mean-field reaction-
diffusion equations must be modified to take into account
properly thesunavoidabled internal density fluctuations. The
ensuing noise is real and multiplicative, and in magnitude is
of the same order as the GS reaction itself. In Sec. III we
present the results of the numerical simulations of the Lange-
vin equations derived in Sec. II and assess the impact that
strong multiplicative noise has on the subsequent evolution
of spatially localized structures in two dimensions. Conclu-
sions are drawn in Sec. IV.

II. THE U+2V\3V REACTION

The Gray–Scott model4 is a variant of the autocatalytic
Selkov model of glycolysis, corresponding to the following
chemical reactions:

U + 2V→
l

3V,

V→
m

P,

s1d

U→
n

Q,

→
u0

U.

Vsx,td andUsx,td represent the concentrations of the chemi-
cal speciesV and U, and are functions ofd-dimensional
spacex and timet. l is the reaction rate,P andQ are inert
products,m is the decay rate ofV, n is the decay rate ofU,
andu0 is the constant feed rate. A nonequilibrium constraint
is represented by a feed term forU. The rate at whichU is
supplied is positive if the concentration ofU drops below an
equilibrium value and negative if it exceeds it. The equilib-
rium U concentration is given byu0/n. The chemical species
U andV can diffuse with independent diffusion constantsDu

andDv. All the model parameters are positive.

A. Continuous time master equation

Our starting point is the continuous time master equation
describing the above reactionss1d on ad-dimensional hyper-
cubic lattice, allowing multiple occupancy per site. Consider
theU andV particles moving diffusively on a lattice of spac-
ing l and some probability of decaying, and of reacting
whenever they meet on a lattice site. LetPshmj ,hnj ; td be the
probability to find the particle configurationhmj, hnj at time
t. The setshmj=sm1,m2,… ,mNd andhnj=sn1,n2,… ,nNd de-
scribe the occupation numbers of theV and U particles on
each lattice sitei, respectively. The appropriate master equa-
tion is given by

]

]t
Pshmj,hnj;td =

Dv

l2 o
si,jd

hsmj + 1dPs…,mi − 1,mj + 1,…;td − miPj +
Du

l2 o
si,jd

hsnj + 1dPs…,ni − 1,nj + 1,…;td − niPj

+
l

2o
i

hsmi − 1dsmi − 2dsni + 1dPs…,mi − 1,…,ni + 1,…;td − mismi − 1dniPj

+ mo
i

hsmi + 1dPs…,mi + 1,…;td − miPj + no
i

hsni + 1dPs…,ni + 1,…;td − niPj

+ u0o
i

hPs…,mi + 1,…;td − Pj. s2d

This equation describes the evolution ofP in time. A given
configuration can change due to one of the six independent
processes: by the diffusion ofV particlesffirst line of s2dg
whereDv is the diffusion constant and by the diffusion of the
U particles whereDu is the diffusion constant. It will also
change when twoV particles meet aU particle to produce

anotherV particle, with ratel, and when aV particle orU
particle decays spontaneously with ratesm and n, respec-
tively. Finally, the probability changes due to the constant
source ofU particles, with feed rateu0. In the diffusive terms
the symbolsi , jd indicates summing over sitesi and their
nearest neighborsj .
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B. Mapping to bosonic field theory

This master equations2d can be mapped to a second-
quantized description following a procedure developed by
Doi.10 Briefly, we introduce annihilation and creation opera-
tors a and a† for V and b and b† for U at each lattice site,
with the commutation relationsfai ,aj

†g=di j and fbi ,bj
†g=di j .

The vacuum state satisfiesaiu0l=biu0l=0. We then define the
time-dependent state vector

uCstdl = o
hmj,hnj

Pshmj,hnj,tdp
i

sai
†dmisbi

†dniu0l. s3d

The master equation can be written as a Schrödinger-like
equation

−
] uCstdl

]t
= HuCstdl, s4d

where the lattice hamiltonian or time-evolution operator is a
function of a, a†, b, andb† and is given by

H =
Dv

l2 o
si,jd

sai
† − aj

†dsai − ajd +
Du

l2 o
si,jd

sbi
† − bj

†dsbi − bjd

−
l

2o
i

fsai
†d3ai

2bi − sai
†d2ai

2bi
†big + no

i

sbi
† − 1dbi

+ mo
i

sai
† − 1dai + u0o

i

s1 − bi
†d. s5d

This has the formal solutionuCstdl=exps−HtduCs0dl.
Finally, this second-quantized bosonic operators5d is

mapped onto a continuum field theory. This procedure is now
standard and we refer to Ref. 11 for further details. In our
case, for the GS system, we end up with the following path
integral:

Ust,0d =E DaDāDbDb̄e−Sfa,ā,b,b̄g, s6d

over the continuous fieldsasx,td, āsx,td, bsx,td, and b̄sx,td
where the actionS is given by

S=E ddxE
0

t

dtFā]ta + Dv ¹ ā ¹ a + b̄]tb + Du ¹ b̄ ¹ b

+ msā − 1da + nsb̄ − 1db − u0sb̄ − 1d

−
l

2
sā3a2b − ā2a2b̄bdG . s7d

We have omitted terms related to the initial state. Aside from
taking the continuum limit, the derivation of this action is
exact, and in particular, no assumptions regarding the precise
form of the noise are required.

C. Approximate Langevin equation description

For the final step we perform the shiftā=1+a* and b̄
=1+b* on the actionS and obtain

s8d

We will represent the quadratic terms ina* , b* sindicated
with the underbraced by an integration over Gaussian noise
terms, which will allow us to then integrate out the conjugate
fields if we ignore the terms cubic in these conjugate fields.
Doing so, we derive an approximate Langevin description of
the exact field theory ins7d. To carry this out explicitly, we
note that

efla2bsa*2−a*b* dg < E DjDhPsj,hdesa*j+b*hd, s9d

where the noise functionsj andh are distributed according
to a double Gaussian as

Psj,hd = expF− sh,jdASh

j
DG , s10d

and where thesinversed matrix A of noise-noise correlation
functions is

A =
1

2la2b
S0 1

1 2
D, A−1 = Skhhl khjl

kjhl kjjl
D . s11d

Integrating out the conjugate fieldsa* andb* from the func-
tional integrals8d then leads to the pair of coupled nonlinear
Langevin equations

]tasx,td = Dv¹
2asx,td − masx,td +

l

2
asx,td2bsx,td + jsx,td,

s12d

]tbsx,td = Du¹
2bsx,td − nbsx,td −

l

2
asx,td2bsx,td

+ u0 + hsx,td,

with positive noise correlations that can be read off directly
from s11d

kjsx,tdl = khsx,tdl = 0,

kjsx,tdjsx8,t8dl = lasx,td2bsx,tdddsx − x8ddst − t8d,

s13d
kjsx,tdhsx8,t8dl = 2lasx,td2bsx,tdddsx − x8ddst − t8d,

khsx,tdhsx8,t8dl = 0.

Thus the multiplicative reaction noise isreal, a point well
worth mentioning sinceimaginarynoise terms are known to
arise in some effective Langevin descriptions of diffusion-
limited reactions.14 It is important to emphasize that the
mathematical character of the Langevin noisesi.e., whether
the noise turns out to be real or imaginaryd is determined by
the nature of the underlying reaction processes. Thus, for
example, particle annihilation leads to imaginary noise while
particle production or coagulation leads instead to real noise.
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In the GS case treated here, the three-body reaction ex-
pressed ins1d leads to the net production ofV-type species,
so we can expect the noise in the Langevin equation forV to
be real, which is, in fact, the case.

The mathematical structure of the noise correlations in
s13d merits some comment. We note that this equation estab-
lishes a relation between the moments of the noise sources
and the values of the fluctuating concentration fields. Strictly
speaking, the noise cumulants should depend on the mo-
ments of the fields. Thus, for example, by employing a so-
called “curtailed characteristic functional,” van Kampen was
able to exactly compute the cumulants of the noise source for
a spatially independent Markov process.15 The apparent in-
consistency ins13d is common in the literature. We empha-
size that this is not an artifact of the approximation used
here; similar relationssi.e., equating averaged to fluctuating
variablesd arise even when the functional integration over the
conjugate fields can be performed exactly.14 There are two
ways out of this apparent inconsistency: on the one hand, we
note that the noise cumulants are proportional to delta func-
tions which limit the effects of the fluctuations to the single
point x=x8 and single timet= t8. Alternatively, in using the
identity in s9d, one always has the freedom to define the
matrix A of noise correlationss11d as being strictly constant,
at the expense of shiftingsthe square root ofd the field-
dependent prefactor into the resultant Langevin equation. If
we follow this option, the noise comes out strictly white and
the noise correlations are mathematically consistent. This, in
fact, is the option we employ below when we come to con-
sider the numerical simulations. Finally, we note that these
Langevin equationss12d reduce to the GS reaction-diffusion
system in the mean-field approximation in which the par-
ticles are uncorrelated.

III. NUMERICAL SIMULATION

Based on the microscopic master equations2d and the
field-theoretic action of the systems8d, we have derived an
approximate effective Langevin descriptions12d for this
chemical system where the statistical properties of the inter-
nal noise termss13d have been explicitly calculated. Notice
that the unavoidable internal reaction noise is multiplicative
and its intensity is comparable to that of the reaction terms.
This problem can thus not be analyzed by perturbation
theory and must be treated numerically. In the case of weak
additive noisesGaussian white noise and colored Ornstein–
Uhlenbeck noised the stochastic system described in Eq.s14d
has been investigated in detail.7,16 The patterns to which the
system converged changed drastically with small changes in
the noise intensity. Using the lowest-order one-loop renor-
malization groupsRGd,17 we demonstrated that a weak addi-
tive noise induces a modification in the parameters of the
system. By combining analytic and numerical work, we es-
tablished an equivalence between a sequence of patterns gen-
erated by varying the noise amplitude but keeping all other
parameters fixed, and a companion sequence generated by
keeping the noise fixed and varyingsi.e., renormalizingd in-
stead some of the model parameters according to the predic-
tions of the RG flow equations. In the deterministic case, this

reaction-diffusion system was numerically investigated lead-
ing to a great variety of patterns in a rather small region of
the parameter space.5 We investigate here this region and its
neighborhood when the reaction-diffusion system is sub-
jected to the intrinsically large amplitude internal reaction
noise.

The noise term in thea equation has a field-dependent
autocorrelation or strength. On the contrary, the noise in the
b-field equation has zero autocorrelation, i.e., it is a noise of
zero strength which we henceforth take as null in our nu-
merical studies. For real noise, we can identify the fieldsa
andb with the particle densitiesV andU, respectively. With-
out loss of generality, we redefine the noisej→ÎlUVu with
u a Gaussian whitesuncorrelatedd zero-mean noise of unit
strength. We thus consider the following reaction-diffusion
system subjected to multiplicative noise ind=2 space di-
mensions:

]V

]t
= lUV2 − mV + Dv¹

2V + ÎlUVusx,y,td,

]U

]t
= u0 − lUV2 − nU + Du¹

2U, s14d

with kuvsx,y,tduvsx8 ,y8 ,t8dl=dsx−x8ddsy−y8ddst− t8d and
where ¹2=s]2/]x2d+s]2/]y2d. We study this system forl
=1, Du=1, andDv=0.5 and settingu0=n.

The numerical simulations of system evolution have
been performed using forward Euler integration of the finite-
difference equations following discretization of space and
time in the stochastic partial differential equationss14d. The
spatial mesh consists of a lattice of 2563256 cells with cell
size Dx=Dy=2.18 and periodic boundary conditions. The
noise has been discretized as well. The system has been nu-
merically integrated up tot=5000swith time stepDt=0.05d.
After the transient timesroughly t<2000, depending on the
exact system parameters and initial conditionsd, during
which the perturbation spread, the system went into an
asymptotic state.

For comparison with the deterministic case studied in
Ref. 5, we have used the sameF, k coordinates which cor-
respond toF=n andk=m−n. Following Ref. 5, we first con-
sidered the time evolution of an initial perturbation in the
homogeneous trivial stable state of the reaction-diffusion
system. The initial conditions consisted of one localized
square pulse withsU=0.5, V=0.25d plus random Gaussian
noise perturbing the trivial steady statesU=1, V=0d. The
perturbing pulse measured 22322 cells, just wide enough to
allow the autocatalytic reaction to be locally self-sustaining.
In the Figs. 1sad–1sed and sRd, only the concentration of the
substrateU is shown. When displayed in color, the blue rep-
resents a concentration ofU between 0.2 and 0.4, where the
substrate is being depleted by the autocatalytic production of
V, yellow represents an intermediate concentration of
roughly 0.8, and red represents the trivial steady statesU
=1, V=0d where all fluctuations cease entirely. None of the
noise-free patterns reported in Ref. 5 survive in this strong,
stochastic regime. However, besides the trivial time-
independent solution shown insRd, sU=1, V=0d, we have
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found nontrivial spatial patterns in a widerk andF region of
parameter space than that surveyed in Ref. 5. In spite of the
strong intrinsic noise, the existence of the relatively ordered
patternsad with self-replicating moving globules is remark-
able. These globules consist of localized closed structures, in
which the reactant concentration differs from the surround-
ing concentration field. In the interior of each of these units,
in blue, there is a region with sustained autocatalytic produc-
tion of V which is causing the local depletion of the substrate
U. This blue region corresponds roughly to the statesU
=0.3,V=0.25d depending on the exact parameter values. The
main difference between patternsad and sbd is the ability of
these structures to split into new closed units, which is lost in
patternsbd leading to a merged structure. For fixedF=n, ask
sor equivalentlym, the decay rate of theV particlesd is de-
creased, there is a smooth transition from patternsbd sk
=0.06d throughsed sk=0.025d and then again tosRd. Similar
patterns can be found with differentk and F. As F is de-
creased the size of the structures in the patterns increases,
see, for instance, Fig. 2 and compare the patterns with the
corresponding ones shown in Fig. 1.

In Fig. 3 we present the parameter space mapping of the
patterns found. The solid line separates two relevant regions
of the deterministic reaction-diffusion case: on the right side
of the solid line there is a single trivial, spatially uniform
state sRd whereas on the left side there are two spatially
uniform statessR and uniform blued. Both are linearly stable.
In the vicinity of this line, asF is decreased, the uniform
blue states looses stability through a Hopf bifurcation lead-
ing to a great variety of patterns. For a detailed analysis of
the patterns found in parameter space, for the time evolution
of this initial condition in the deterministic case, see Ref. 5.
Notice that patternsad appears for a set of parameters that
under the deterministic case would have led to a trivial so-
lution of the typesRd. On the contrary, the patterns found in
the deterministic reaction-diffusion case do not survive when
the internal reaction noise is taken into account. In particular,
the uniform blue state disappears. Therefore, of the two uni-
form stable solutions of the deterministic case, only the

trivial one survives. In the trivial red statesU=1, V=0d, the
stochastic fluctuations, whose amplitude is given byÎlUV,
cease entirely and hence this state isinactive. Whereas in the
blue uniform statesU=0.3, V=0.25d the nonvanishing fluc-
tuations drive the system away to one of the patterns shown.
Furthermore, the range in parameter space over which pat-
terns can be found is greater in the noisy case than in the
deterministic one; the range is roughly twice as wide in thek
range and approximately three times as wide in theF range.

For completeness we considered next the case of uni-
form, unperturbed, initial conditions. As mentioned before,
for the parameter region on the left side of the solid line in
Fig. 3, the blue statesU=0.3,V=0.25d is the nontrivial stable
solution of thenoise-free, reaction-diffusion system. In Fig.
4, upper row, we show the time evolution of this state for
F=0.05 andk=0.055, i.e., within the region where it should
be stable in the noise-free case. However, due to the reaction
noise, the blue pattern evolves towards patternscd, like the
uniform red state did under the influence of local perturba-
tion, see Fig. 3. Therefore, the local-density fluctuations are
strong enough to spontaneously form a pattern also starting
from the blue uniform stable state. If we setF=0.05 andk
=0.0725, which corresponds to the right side of the solid
line, we find that the evolution of this pattern converges to
the globular patternsad, see the lower row of figures in Fig.
4. This is also remarkable since in the noise-free reaction-
diffusion case, spots cannot form spontaneously from a uni-
form state.

Therefore, if we take into account the unavoidable in-

FIG. 1. Reference patterns of the GS reaction-diffusion system subject to internal reaction noise. The individual simulations referred to in the text are, from
left to right, as follows:sRd k=0.08,sad k=0.07,sbd k=0.06,scd k=0.05,sdd k=0.04, andsed k=0.03. The initial condition was the uniform red, trivial state
sU=1,V=0d with a small localized perturbing pulsessee text for detailsd. Concentration of fieldUsx,y,td is displayed att=5000 for the parameter range
F=n=0.025,k=m−n=f0.025:0.08g.

FIG. 2. The concentration of the fieldUsx,y,td displayed att=5000 for
sfrom left to rightd sad F=0.0025,k=0.05; sbd F=0.01,k=0.05; andscd F
=0.01,k=0.0375. AsF is decreased the size of the structures in the patterns
increases. The patterns are designated with the corresponding letter of the
reference case in Fig. 1, which have a greater value ofF. Notice that the size
of the square region depicted in the figures is the same.

FIG. 3. Parameter space diagram withk=m−n and F=n. The letters indi-
cate the location where similar patterns to the reference ones in Fig. 1 were
found. A transitional pattern between two reference cases is designated by a
pair of two corresponding lettersse.g., ed and cbd. R indicates that the
system evolved to theinactiveuniform trivial, red, state. See the text for an
explanation of the solid-line.
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trinsic reaction noise, the dynamics of the system can be
completely different, and in some cases, even richer than that
of the idealized noise-free case. We also found that if the
noise intensity of this multiplicative stochastic term is artifi-
cially damped, we do recover all the complex patterns ob-
tained for the purely deterministic mean-field situation.

IV. DISCUSSION

The standardsnoise-freed GS reaction-diffusion equa-
tions presume that there is particle diffusion due to the un-
correlated Brownian motion of the molecules involved and
that the reaction rate is simply given by the product of the
probability of finding two molecules of autocatalyst and a
molecule of substrate at the same point. This approximation
clearly neglects the existing correlation between the mol-
ecules and the presence of microscopic particle density fluc-
tuations which cause these mean-field rate equations to break
down. In a Langevin description, these same fluctuations
lead to multiplicative noise terms whose mathematical prop-
erties depend on the nature of the reactions present. Particle
production or clustering leads to positive noise correlations,
and real noise, while particle annihilation leads to anticorre-
lations and hence imaginary noise.

Starting from the microscopic master equation, we have
derived a field-theoretic action of the GS reaction system and
from there we have deduced effective Langevin-type equa-
tions where the form of the noise is specified precisely with-
out any assumption. An alternative but equivalent approach
yielding a path-integral solution to the chemical master equa-
tion, and which dispenses with creation and annihilation op-
erators, is given by Kubo, Matsuo, and Kitahara18 sKMK d. In
both of these approaches in Refs. 11 and 18, the master equa-
tion is formally written as a “Schrödinger” equation with a
corresponding chemical Hamiltonian. While in Peliti’s ap-
proach, this Hamiltonian is an operator involving creation
and annihilation operators, for KMK, the Hamiltonian is an
ordinary function, not an operator. Nevertheless, the final
functional integral expressions derived for the Hamiltonians
in either approach are identical in the following sense. In
Ref. 11, the dynamical variables appearing in the path inte-
gral are continuum creation and annihilation fieldssbut are
no longer operatorsd, while in Ref. 18, they are position and
momentum fields. A simple canonical transformation relates
the two languages.

The Langevin equations derived in the present paper are
approximate in that the multiplicative noise appearing ins12d
is Gaussian distributed. Recall that the noise represents the
terms in the actionS s8d quadratic in the conjugate fieldsa*

andb* . The presence of cubic terms in these fields indicates
that the fluctuations are actually skewedsnot symmetricd, but
there is unfortunately no exact identitysi.e., in the spirit of
Hubbard–Stratanovichd allowing one to replace the cubic
terms by equivalent noise terms, as we did ins9d. Neverthe-
less, we note that the quadratic and cubic terms are all pro-
portional to the reaction term,la2b. We thus expect that the
noise in the putative exact Langevin description has a
strength comparable with that of the Gaussian approxima-
tion. The internal reaction noise depends both on the density
of the substrate and product, i.e., when either of them is zero
there is no reaction and therefore no noise either. The nu-
merical solutions in Figs. 1sad–1sdd and in Fig. 3 correspond
to the active states, i.e., since in these states, the internal
fluctuations persist and the asymptotic particle densities are
finite. In fact, fluctuations are always present in the GS
model, since the substrateU is being constantly replenished
at the rateu0.0, and provided thatV is nonvanishing, the
noise amplitudeÎlUV is always positive and finite. Only for
the trivial stateU=1, V=0, where the density ofV is vanish-
ing, do the stochastic fluctuations cease entirely and hence
the statesRd is inactive.

The internal reaction noise is unavoidable and as strong
as the reaction term. We have demonstrated numerically that
its influence can dramatically change the dynamics of the
system producing new stable states in the reaction. In par-
ticular, we report on the existence of globular replicating
structures in the Langevin GS reaction-diffusion system,
with internal reaction noise, in a region of parameter space
which in the deterministic case was expected to decay to the
trivial, uniform solution.

Through this study case of a chemical reaction system
we have provided a specific example where the evolution of
the densities depends strongly on microscopic fluctuations,
and cannot be derived from mean-field rate equations. This
approach may also be relevant in other chemical processes
capable of generating spatially organized structures, and in
particular, in the case of low spatial dimensionality.
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