8 research outputs found

    Single machine scheduling with controllable processing times by submodular optimization

    Get PDF
    In scheduling with controllable processing times the actual processing time of each job is to be chosen from the interval between the smallest (compressed or fully crashed) value and the largest (decompressed or uncrashed) value. In the problems under consideration, the jobs are processed on a single machine and the quality of a schedule is measured by two functions: the maximum cost (that depends on job completion times) and the total compression cost. Our main model is bicriteria and is related to determining an optimal trade-off between these two objectives. Additionally, we consider a pair of associated single criterion problems, in which one of the objective functions is bounded while the other one is to be minimized. We reduce the bicriteria problem to a series of parametric linear programs defined over the intersection of a submodular polyhedron with a box. We demonstrate that the feasible region is represented by a so-called base polyhedron and the corresponding problem can be solved by the greedy algorithm that runs two orders of magnitude faster than known previously. For each of the associated single criterion problems, we develop algorithms that deliver the optimum faster than it can be deduced from a solution to the bicriteria problem

    Characteristics of Health Information Gatherers, Disseminators, and Blockers Within Families at Risk of Hereditary Cancer: Implications for Family Health Communication Interventions

    No full text
    Objectives. Given the importance of the dissemination of accurate family history to assess disease risk, we characterized the gatherers, disseminators, and blockers of health information within families at high genetic risk of cancer

    Circulating T-Cell Subsets, Monocytes, and Natural Killer Cells in Peripartum Cardiomyopathy: Results From the Multicenter IPAC Study

    No full text
    •Immune cell subsets were examined in healthy postpartum and peripartum cardiomyopathy (PPCM) women.•In the early postpartum, PPCM women had lower NK and higher CD3+CD4–CD8–CD38+ T cell levels.•Levels largely normalized by 6 months postpartum. The aim of this work was to evaluate the hypothesis that the distribution of circulating immune cell subsets, or their activation state, is significantly different between peripartum cardiomyopathy (PPCM) and healthy postpartum (HP) women. PPCM is a major cause of maternal morbidity and mortality, and an immune-mediated etiology has been hypothesized. Cellular immunity, altered in pregnancy and the peripartum period, has been proposed to play a role in PPCM pathogenesis. The Investigation of Pregnancy-Associated Cardiomyopathy (IPAC) study enrolled 100 women presenting with a left ventricular ejection fraction of <0.45 within 2 months of delivery. Peripheral T-cell subsets, natural killer (NK) cells, and cellular activation markers were assessed by flow cytometry in PPCM women early (<6 wk), 2 months, and 6 months postpartum and compared with those of HP women and women with non–pregnancy-associated recent-onset cardiomyopathy (ROCM). Entry NK cell levels (CD3–CD56+CD16+; reported as % of CD3– cells) were significantly (P < .0003) reduced in PPCM (6.6 ± 4.9% of CD3– cells) compared to HP (11.9 ± 5%). Of T-cell subtypes, CD3+CD4–CD8–CD38+ cells differed significantly (P < .004) between PPCM (24.5 ± 12.5% of CD3+CD4–CD8– cells) and HP (12.5 ± 6.4%). PPCM patients demonstrated a rapid recovery of NK and CD3+CD4–CD8–CD38+ cell levels. However, black women had a delayed recovery of NK cells. A similar reduction of NK cells was observed in women with ROCM. Compared with HP control women, early postpartum PPCM women show significantly reduced NK cells, and higher CD3+CD4–CD8–CD38+ cells, which both normalize over time postpartum. The mechanistic role of NK cells and “double negative” (CD4–CD8–) T regulatory cells in PPCM requires further investigation
    corecore