9,977 research outputs found
Identification. The missing link between joint attention and imitation
In this paper we outline our hypothesis that human intersubjective engagement entails identifying with other people. We tested a prediction derived from this hypothesis that concerned the relation between a component of joint attention and a specific form of imitation. The empirical investigation involved “blind” ratings of videotapes from a recent study in which we tested matched children with and without autism for their propensity to imitate the self-/other-orientated aspects of another person's actions. The results were in keeping with three a priori predictions, as follows: (a) children with autism contrasted with control participants in spending more time looking at the objects acted upon and less time looking at the tester; (b) participants with autism showed fewer “sharing” looks toward the tester, and although they also showed fewer “checking” and “orientating” looks, they were specifically less likely to show any sharing looks; and, critically, (c) within each group, individual differences in sharing looks (only) were associated with imitation of self–other orientation. We suggest that the propensity to adopt the bodily anchored psychological stance of another person is essential to certain forms of joint attention and imitation, and that a weak tendency to identify with others is pivotal for the developmental psychopathology of autism
Challenges in using GPUs for the real-time reconstruction of digital hologram images
This is the pre-print version of the final published paper that is available from the link below.In-line holography has recently made the transition from silver-halide based recording media, with laser reconstruction, to recording with large-area pixel detectors and computer-based reconstruction. This form of holographic imaging is an established technique for the study of fine particulates, such as cloud or fuel droplets, marine plankton and alluvial sediments, and enables a true 3D object field to be recorded at high resolution over a considerable depth.
The move to digital holography promises rapid, if not instantaneous, feedback as it avoids the need for the time-consuming chemical development of plates or film film and a dedicated replay system, but with the growing use of video-rate holographic recording, and the desire to reconstruct fully every frame, the computational challenge becomes considerable. To replay a digital hologram a 2D FFT must be calculated for every depth slice desired in the replayed image volume. A typical hologram of ~100 ÎĽm particles over a depth of a few hundred millimetres will require O(10^3) 2D FFT operations to be performed on a hologram of typically a few million pixels.
In this paper we discuss the technical challenges in converting our existing reconstruction code to make efficient use of NVIDIA CUDA-based GPU cards and show how near real-time video slice reconstruction can be obtained with holograms as large as 4096 by 4096 pixels. Our performance to date for a number of different NVIDIA GPU running under both Linux and Microsoft Windows is presented. The recent availability of GPU on portable computers is discussed and a new code for interactive replay of digital holograms is presented
Personal relatedness and attachment in infants of mothers with borderline personality disorder
The principal aim of this study was to assess personal relatedness and attachment patterns in 12-month-old infants of mothers with borderline personality disorder (BPD). We also evaluated maternal intrusive insensitivity toward the infants in semistructured play. We videotaped 10 mother-infant dyads with borderline mothers and 22 dyads where the mothers were free from psychopathology, in three different settings: a modification of Winnicott's Set Situation in which infants faced an initially unresponsive ("still-face") stranger, who subsequently tried to engage the infant in a game of give and take; the Strange Situation of Ainsworth and Wittig; and a situation in which mothers were requested to teach their infants to play with miniature figures and a toy train. In relation to a set of a priori predictions, the results revealed significant group differences as follows: (a) compared with control infants, toward the stranger the infants of mothers with BPD showed lower levels of "availability for positive engagement," lower ratings of "behavior organization and mood state," and a lower proportion of interpersonally directed looks that were positive; (b) in the Strange Situation, a higher proportion (8 out of 10) of infants of borderline mothers were categorized as Disorganized; and (c) in play, mothers with BPD were rated as more "intrusively insensitive" toward their infants. The results are discussed in relation to hypotheses concerning the interpersonal relations of women with BPD, and possible implications for their infants' development
"Fiscal Equalization in Japan: Assessment and Recommendations"
Intergovernmental fiscal relations in Japan have been strained in recent years. This paper seeks to assess the Japanese equalization transfer in the light of the theory of fiscal federalism. This paper argues that the case for equalization lies in offsetting net fiscal benefit (NFB) differentials across jurisdictions. It has been shown that the case for equalization and its design depend on the type of public good being provided as well as the mode of finance. Moreover, where equalization is called for, its form and level can be very different depending on whether the relevant policy goal is that of fiscal equity or fiscal efficiency. Studying the institutional context, we arrive at the conclusion that the system of equalization transfers in Japan is consistent with the application of those principles.
Systematic Errors in Cosmic Microwave Background Interferometry
Cosmic microwave background (CMB) polarization observations will require
superb control of systematic errors in order to achieve their full scientific
potential, particularly in the case of attempts to detect the B modes that may
provide a window on inflation. Interferometry may be a promising way to achieve
these goals. This paper presents a formalism for characterizing the effects of
a variety of systematic errors on interferometric CMB polarization
observations, with particular emphasis on estimates of the B-mode power
spectrum. The most severe errors are those that couple the temperature
anisotropy signal to polarization; such errors include cross-talk within
detectors, misalignment of polarizers, and cross-polarization. In a B mode
experiment, the next most serious category of errors are those that mix E and B
modes, such as gain fluctuations, pointing errors, and beam shape errors. The
paper also indicates which sources of error may cause circular polarization
(e.g., from foregrounds) to contaminate the cosmologically interesting linear
polarization channels, and conversely whether monitoring of the circular
polarization channels may yield useful information about the errors themselves.
For all the sources of error considered, estimates of the level of control that
will be required for both E and B mode experiments are provided. Both
experiments that interfere linear polarizations and those that interfere
circular polarizations are considered. The fact that circular experiments
simultaneously measure both linear polarization Stokes parameters in each
baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.
Mosaicking with cosmic microwave background interferometers
Measurements of cosmic microwave background (CMB) anisotropies by
interferometers offer several advantages over single-dish observations. The
formalism for analyzing interferometer CMB data is well developed in the
flat-sky approximation, valid for small fields of view. As the area of sky is
increased to obtain finer spectral resolution, this approximation needs to be
relaxed. We extend the formalism for CMB interferometry, including both
temperature and polarization, to mosaics of observations covering arbitrarily
large areas of the sky, with each individual pointing lying within the flat-sky
approximation. We present a method for computing the correlation between
visibilities with arbitrary pointing centers and baselines and illustrate the
effects of sky curvature on the l-space resolution that can be obtained from a
mosaic.Comment: 9 pages; submitted to Ap
The effect of point sources on satellite observations of the cosmic microwave background
We study the effect of extragalactic point sources on satellite observations
of the cosmic microwave background (CMB). In order to separate the
contributions due to different foreground components, a maximum-entropy method
is applied to simulated observations by the Planck Surveyor satellite. In
addition to point sources, the simulations include emission from the CMB and
the kinetic and thermal Sunyaev-Zel'dovich (SZ) effects from galaxy clusters,
as well as Galactic dust, free-free and synchrotron emission. We find that the
main input components are faithfully recovered and, in particular, that the
quality of the CMB reconstruction is only slightly reduced by the presence of
point sources. In addition, we find that it is possible to recover accurate
point source catalogues at each of the Planck Surveyor observing frequencies.Comment: 12 pages, 9 figures, submitted to MNRA
Ephemeral properties and the illusion of microscopic particles
Founding our analysis on the Geneva-Brussels approach to quantum mechanics,
we use conventional macroscopic objects as guiding examples to clarify the
content of two important results of the beginning of twentieth century:
Einstein-Podolsky-Rosen's reality criterion and Heisenberg's uncertainty
principle. We then use them in combination to show that our widespread belief
in the existence of microscopic particles is only the result of a cognitive
illusion, as microscopic particles are not particles, but are instead the
ephemeral spatial and local manifestations of non-spatial and non-local
entities
- …