9,112 research outputs found
Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 3: Laser Doppler velocimeter report
Laser Doppler velocimeter (LDV) techniques were employed for testing a highly loaded, 550 m/sec (1800 ft/sec) tip speed, test fan stage, the objective to provide detailed mapping of the upstream, intrablade, and downstream flowfields of the rotor. Intrablade LDV measurements of velocity and flow angle were obtained along four streamlines passing through the leading edge at 45%, 69%, 85%, and 95% span measured from hub to tip, at 100% of design speed, peak efficiency; 100% speed, near surge; and 95% speed, peak efficiency. At the design point, most passages appeared to have a strong leading edge shock, which moved forward with increasing strength near surge and at part speeds. The flow behind the shock was of a complex mixed subsonic and supersonic form. The intrablade flowfields were found to be significantly nonperiodic at 100% design speed, peak efficiency
A Bayesian parameter estimation approach to pulsar time-of-arrival analysis
The increasing sensitivities of pulsar timing arrays to ultra-low frequency
(nHz) gravitational waves promises to achieve direct gravitational wave
detection within the next 5-10 years. While there are many parallel efforts
being made in the improvement of telescope sensitivity, the detection of stable
millisecond pulsars and the improvement of the timing software, there are
reasons to believe that the methods used to accurately determine the
time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More
specifically, the determination of the uncertainties on these TOAs, which
strongly affect the ability to detect GWs through pulsar timing, may be
unreliable. We propose two Bayesian methods for the generation of pulsar TOAs
starting from pulsar "search-mode" data and pre-folded data. These methods are
applied to simulated toy-model examples and in this initial work we focus on
the issue of uncertainties in the folding period. The final results of our
analysis are expressed in the form of posterior probability distributions on
the signal parameters (including the TOA) from a single observation.Comment: 16 pages, 4 figure
Recommended from our members
Integrating short-term demand response into long-term investment planning
Planning models have been used for many years to optimize generation investments in electric power systems. More recently, these models have been extended in order to treat demand-side management on an equal footing. This paper stresses the importance of integrating short-term demand response to time-varying prices into those investment models. Three different methodologies are suggested to integrate short-term responsiveness into a long-term model assuming that consumer response can be modelled using price-elastic demand and that generators behave competitively. First, numerical results show that considering operational constraints in an investment model results in less inflexible base load capacity and more mid-range capacity that has higher ramp rates. Then, own-price and cross-price elasticities are included in order to incorporate consumersâ willingness to adjust the demand profile in response to price changes. Whereas own-price elasticities account for immediate response to price signals, cross-price elasticities account for shifting loads to other periods. As energy efficiency programs sponsored by governments or utilities also influence the load profile, the interaction of energy efficiency expenditures and demand response is also modelled. In particular, reduced responsiveness to prices can be a side effect when consumers have become more energy efficient. Comparison of model results for a single year optimization with and without demand response shows the peak reduction and valley filling effects of response to real-time prices for an illustrative example with a large amount of wind power injections. Additionally, increasing demand elasticity increases the optimal amount of installed wind power capacity. This suggests that demand-side management can result in environmental benefits not only through reducing energy use, but also by facilitating integration of renewable energy
Risk Aversion and CO2 Regulatory Uncertainty in Power Generation Investment: Policy and Modeling Implications
Our simulation considers producers in a competitive energy market. Risk averse producers face uncertainty about future carbon regulation. Investment decisions are a two-stage equilibrium problem. Initially, investment is made under regulatory uncertainty; then the regulatory state is revealed and producers realize returns. We consider taxes, grandfathered permits and auctioned permits and show that outcomes vary under risk aversion; some anticipated policies yield perverse investment incentives, in that investment in the dirty technology is encouraged. Beliefs about the policy instrument that will be used to price carbon may be as important as certainty that carbon will be priced. More generally, a failure to consider risk aversion may bias policy models of the power sector
Agent-based homeostatic control for green energy in the smart grid
With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs
Search for a Radio Pulsar in the Remnant of Supernova 1987A
We have observed the remnant of supernova SN~1987A (SNR~1987A), located in
the Large Magellanic Cloud (LMC), to search for periodic and/or transient radio
emission with the Parkes 64\,m-diameter radio telescope. We found no evidence
of a radio pulsar in our periodicity search and derived 8 upper bounds
on the flux density of any such source of Jy at 1.4~GHz and
Jy at 3~GHz. Four candidate transient events were detected with
greater than significance, with dispersion measures (DMs) in the
range 150 to 840\,cmpc. For two of them, we found a second pulse at
slightly lower significance. However, we cannot at present conclude that any of
these are associated with a pulsar in SNR~1987A. As a check on the system, we
also observed PSR~B054069, a young pulsar which also lies in the LMC. We
found eight giant pulses at the DM of this pulsar. We discuss the implications
of these results for models of the supernova remnant, neutron star formation
and pulsar evolution.Comment: 7 pages, 3 figures, 2 tables. Accepted for publication in MNRA
Absolute absorption line-shape measurements at the shot-noise limit
Here, we report a measurement scheme for determining an absorption profile with an accuracy imposed solely by photon shot noise. We demonstrate the power of this technique by measuring the absorption of cesium vapor with an uncertainty at the 2-ppm level. This extremely high signal-to-noise ratio allows us to directly observe the homogeneous line-shape component of the spectral profile, even in the presence of Doppler broadening, by measuring the spectral profile at a frequency detuning more than 200 natural linewidths from the line center. We then use this tool to discover an optically induced broadening process that is quite distinct from the well-known power broadening phenomenon
Lifetime measurement of the metastable 3d 2D5/2 state in the 40Ca+ ion using the shelving technique on a few-ion string
We present a measurement of the lifetime of the metastable 3d 2D5/2 state in
the 40Ca+ ion, using the so-called shelving technique on a string of five
Doppler laser-cooled ions in a linear Paul trap. A detailed account of the data
analysis is given, and systematic effects due to unwanted excitation processes
and collisions with background gas atoms are discussed and estimated. From a
total of 6805 shelving events, we obtain a lifetime
tau=1149+/-14(stat.)+/-4(sys.)ms, a result which is in agreement with the most
recent measurements.Comment: 10 pages, 7 figures. Submitted for publicatio
Measurement of Liver Blood Flow: A Review
The study of hepatic haemodynamics is of importance in understanding both hepatic physiology and
disease processes as well as assessing the effects of portosystemic shunting and liver transplantation. The
liver has the most complicated circulation of any organ and many physiological and pathological
processes can affect it1,2. This review surveys the methods available for assessing liver blood flow,
examines the different parameters being measured and outlines problems of applicability and interpretation
for each technique
Pulsar Results with the Fermi Large Area Telescope
The launch of the Fermi Gamma-ray Space Telescope has heralded a new era in
the study of gamma-ray pulsars. The population of confirmed gamma-ray pulsars
has gone from 6-7 to more than 60, and the superb sensitivity of the Large Area
Telescope (LAT) on Fermi has allowed the detailed study of their spectra and
light curves. Twenty-four of these pulsars were discovered in blind searches of
the gamma-ray data, and twenty-one of these are, at present, radio quiet,
despite deep radio follow-up observations. In addition, millisecond pulsars
have been confirmed as a class of gamma-ray emitters, both individually and
collectively in globular clusters. Recently, radio searches in the direction of
LAT sources with no likely counterparts have been highly productive, leading to
the discovery of a large number of new millisecond pulsars. Taken together,
these discoveries promise a great improvement in the understanding of the
gamma-ray emission properties and Galactic population of pulsars. We summarize
some of the results stemming from these newly-detected pulsars and their timing
and multi-wavelength follow-up observations.Comment: 21 pages, 9 figures, to appear in Proceedings of ICREA Workshop on
The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain,
2010 April 12-16 (Springer
- âŠ