9,002 research outputs found

    High N, dry: Experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought.

    Get PDF
    Hotter, longer, and more frequent global change-type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought-induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean-type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multiyear drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water-use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation-type conversion

    Radio observations of two intermittent pulsars: PSRs J1832+0029 and J1841-0500

    Full text link
    We present long-term observations of two intermittent pulsars, PSRs~J1832+0029 and J1841−-0500 using the Parkes 64\,m radio telescope. The radio emission for these pulsars switches "off" for year-long durations. Our new observations have enabled us to improve the determination of the on-off timescales and the spin down rates during those emission states. In general our results agree with previous studies of these pulsars, but we now have significantly longer data spans. We have identified two unexpected signatures in the data. Weak emission was detected in a single observation of PSR~J1832++0029 during an "off" emission state. For PSR~J1841−-0500, we identified a quasi-periodic fluctuation in the intensities of the detectable single pulses, with a modulation period between 21 and 36 pulse periods.Comment: 7 pages, 7 figures, accepted for publication in Ap

    Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project

    Get PDF
    The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.Comment: Accepted for publication in PAS

    Search for a Radio Pulsar in the Remnant of Supernova 1987A

    Full text link
    We have observed the remnant of supernova SN~1987A (SNR~1987A), located in the Large Magellanic Cloud (LMC), to search for periodic and/or transient radio emission with the Parkes 64\,m-diameter radio telescope. We found no evidence of a radio pulsar in our periodicity search and derived 8σ\sigma upper bounds on the flux density of any such source of 31 μ31\,\muJy at 1.4~GHz and 21 μ21\,\muJy at 3~GHz. Four candidate transient events were detected with greater than 7σ7\sigma significance, with dispersion measures (DMs) in the range 150 to 840\,cm−3 ^{-3}\,pc. For two of them, we found a second pulse at slightly lower significance. However, we cannot at present conclude that any of these are associated with a pulsar in SNR~1987A. As a check on the system, we also observed PSR~B0540−-69, a young pulsar which also lies in the LMC. We found eight giant pulses at the DM of this pulsar. We discuss the implications of these results for models of the supernova remnant, neutron star formation and pulsar evolution.Comment: 7 pages, 3 figures, 2 tables. Accepted for publication in MNRA

    An improved solar wind electron-density model for pulsar timing

    Full text link
    Variations in the solar wind density introduce variable delays into pulsar timing observations. Current pulsar timing analysis programs only implement simple models of the solar wind, which not only limit the timing accuracy, but can also affect measurements of pulsar rotational, astrometric and orbital parameters. We describe a new model of the solar wind electron density content which uses observations from the Wilcox Solar Observatory of the solar magnetic field. We have implemented this model into the tempo2 pulsar timing package. We show that this model is more accurate than previous models and that these corrections are necessary for high precision pulsar timing applications.Comment: Accepted by ApJ, 13 pages, 4 figure
    • …
    corecore