2,222 research outputs found

    UTP Semantics for BigrTiMo

    Get PDF

    VLTI/MIDI 10 micron interferometry of the forming massive star W33A

    Full text link
    We report on resolved interferometric observations with VLTI/MIDI of the massive young stellar object (MYSO) W33A. The MIDI observations deliver spectrally dispersed visibilities with values between 0.03 and 0.06, for a baseline of 45m over the wavelength range 8-13 micron. The visibilities indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron which increases to 240AU at 13 micron, scales previously unexplored among MYSOs. This observed trend is consistent with the temperature falling off with distance. 1D dust radiative transfer models are simultaneously fit to the visibility spectrum, the strong silicate feature and the shape of the mid infrared spectral energy distribution (SED). For any powerlaw density distribution, we find that the sizes (as implied by the visibilities) and the stellar luminosity are incompatible. A reduction to a third of W33A's previously adopted luminosity is required to match the visibilities; such a reduction is consistent with new high resolution 70 micron data from Spitzer's MIPSGAL survey. We obtain best fits for models with shallow dust density distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the silicate feature produced by decreasing the ISM ratio of graphite to silicates and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter

    Probing discs around massive young stellar objects with CO first overtone emission

    Full text link
    We present high resolution (R~50,000) spectroastrometry over the CO 1st overtone bandhead of a sample of seven intermediate/massive young stellar objects. These are primarily drawn from the red MSX source (RMS) survey, a systematic search for young massive stars which has returned a large, well selected sample of such objects. The mean luminosity of the sample is approximately 5 times 10^4 L_\odot, indicating the objects typically have a mass of ~15 solar masses. We fit the observed bandhead profiles with a model of a circumstellar disc, and find good agreement between the models and observations for all but one object. We compare the high angular precision (0.2-0.8 mas) spectroastrometric data to the spatial distribution of the emitting material in the best-fitting models. No spatial signatures of discs are detected, which is entirely consistent with the properties of the best-fitting models. Therefore, the observations suggest that the CO bandhead emission of massive young stellar objects originates in small-scale disks, in agreement with previous work. This provides further evidence that massive stars form via disc accretion, as suggested by recent simulations.Comment: Accepted for publication in MNRA

    Supergravity Higgs Inflation and Shift Symmetry in Electroweak Theory

    Full text link
    We present a model of inflation in a supergravity framework in the Einstein frame where the Higgs field of the next to minimal supersymmetric standard model (NMSSM) plays the role of the inflaton. Previous attempts which assumed non-minimal coupling to gravity failed due to a tachyonic instability of the singlet field during inflation. A canonical K\"{a}hler potential with \textit{minimal coupling} to gravity can resolve the tachyonic instability but runs into the η\eta-problem. We suggest a model which is free of the η\eta-problem due to an additional coupling in the K\"{a}hler potential which is allowed by the Standard Model gauge group. This induces directions in the potential which we call K-flat. For a certain value of the new coupling in the (N)MSSM, the K\"{a}hler potential is special, because it can be associated with a certain shift symmetry for the Higgs doublets, a generalization of the shift symmetry for singlets in earlier models. We find that K-flat direction has Hu0=−Hd0∗.H_u^0=-H_d^{0*}. This shift symmetry is broken by interactions coming from the superpotential and gauge fields. This direction fails to produce successful inflation in the MSSM but produces a viable model in the NMSSM. The model is specifically interesting in the Peccei-Quinn (PQ) limit of the NMSSM. In this limit the model can be confirmed or ruled-out not just by cosmic microwave background observations but also by axion searches.Comment: matches the published version at JCA

    A discrete geometric model of concurrent program execution

    Get PDF
    A trace of the execution of a concurrent object-oriented program can be displayed in two-dimensions as a diagram of a non-metric finite geometry. The actions of a programs are represented by points, its objects and threads by vertical lines, its transactions by horizontal lines, its communications and resource sharing by sloping arrows, and its partial traces by rectangular figures. We prove informally that the geometry satisfies the laws of Concurrent Kleene Algebra (CKA); these describe and justify the interleaved implementation of multithreaded programs on computer systems with a lesser number of concurrent processors. More familiar forms of semantics (e.g., verification-oriented and operational) can be derived from CKA. Programs are represented as sets of all their possible traces of execution, and non-determinism is introduced as union of these sets. The geometry is extended to multiple levels of abstraction and granularity; a method call at a higher level can be modelled by a specification of the method body, which is implemented at a lower level. The final section describes how the axioms and definitions of the geometry have been encoded in the interactive proof tool Isabelle, and reports on progress towards automatic checking of the proofs in the paper

    Manifestation of nonequilibrium initial conditions in molecular rotation: the generalized J-diffusion model

    Full text link
    In order to adequately describe molecular rotation far from equilibrium, we have generalized the J-diffusion model by allowing the rotational relaxation rate to be angular momentum dependent. The calculated nonequilibrium rotational correlation functions (CFs) are shown to decay much slower than their equilibrium counterparts, and orientational CFs of hot molecules exhibit coherent behavior, which persists for several rotational periods. As distinct from the results of standard theories, rotational and orientational CFs are found to dependent strongly on the nonequilibrium preparation of the molecular ensemble. We predict the Arrhenius energy dependence of rotational relaxation times and violation of the Hubbard relations for orientational relaxation times. The standard and generalized J-diffusion models are shown to be almost indistinguishable under equilibrium conditions. Far from equilibrium, their predictions may differ dramatically

    Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools

    Full text link
    We provide simple equational principles for deriving rely-guarantee-style inference rules and refinement laws based on idempotent semirings. We link the algebraic layer with concrete models of programs based on languages and execution traces. We have implemented the approach in Isabelle/HOL as a lightweight concurrency verification tool that supports reasoning about the control and data flow of concurrent programs with shared variables at different levels of abstraction. This is illustrated on two simple verification examples

    Dynamic telomerase gene suppression via network effects of GSK3 inhibition

    Get PDF
    <b>Background</b>: Telomerase controls telomere homeostasis and cell immortality and is a promising anti-cancer target, but few small molecule telomerase inhibitors have been developed. Reactivated transcription of the catalytic subunit hTERT in cancer cells controls telomerase expression. Better understanding of upstream pathways is critical for effective anti-telomerase therapeutics and may reveal new targets to inhibit hTERT expression. <b>Methodology/Principal Findings</b>: In a focused promoter screen, several GSK3 inhibitors suppressed hTERT reporter activity. GSK3 inhibition using 6-bromoindirubin-3′-oxime suppressed hTERT expression, telomerase activity and telomere length in several cancer cell lines and growth and hTERT expression in ovarian cancer xenografts. Microarray analysis, network modelling and oligonucleotide binding assays suggested that multiple transcription factors were affected. Extensive remodelling involving Sp1, STAT3, c-Myc, NFκB, and p53 occurred at the endogenous hTERT promoter. RNAi screening of the hTERT promoter revealed multiple kinase genes which affect the hTERT promoter, potentially acting through these factors. Prolonged inhibitor treatments caused dynamic expression both of hTERT and of c-Jun, p53, STAT3, AR and c-Myc. <b>Conclusions/Significance</b>: Our results indicate that GSK3 activates hTERT expression in cancer cells and contributes to telomere length homeostasis. GSK3 inhibition is a clinical strategy for several chronic diseases. These results imply that it may also be useful in cancer therapy. However, the complex network effects we show here have implications for either setting

    An Event Structure Model for Probabilistic Concurrent Kleene Algebra

    Full text link
    We give a new true-concurrent model for probabilistic concurrent Kleene algebra. The model is based on probabilistic event structures, which combines ideas from Katoen's work on probabilistic concurrency and Varacca's probabilistic prime event structures. The event structures are compared with a true-concurrent version of Segala's probabilistic simulation. Finally, the algebraic properties of the model are summarised to the extent that they can be used to derive techniques such as probabilistic rely/guarantee inference rules.Comment: Submitted and accepted for LPAR19 (2013

    Expanding e-MERLIN with the Goonhilly Earth Station

    Full text link
    A consortium of universities has recently been formed with the goal of using the decommissioned telecommunications infrastructure at the Goonhilly Earth Station in Cornwall, UK, for astronomical purposes. One particular goal is the introduction of one or more of the ~30-metre parabolic antennas into the existing e-MERLIN radio interferometer. This article introduces this scheme and presents some simulations which quantify the improvements that would be brought to the e-MERLIN system. These include an approximate doubling of the spatial resolution of the array, an increase in its N-S extent with strong implications for imaging the most well-studied equatorial fields, accessible to ESO facilities including ALMA. It also increases the overlap between the e-MERLIN array and the European VLBI Network. We also discuss briefly some niche science areas in which an e-MERLIN array which included a receptor at Goonhilly would be potentially world-leading, in addition to enhancing the existing potential of e-MERLIN in its role as a Square Kilometer Array pathfinder instrument.Comment: 7 pages, 3 figures, to appear in the proceedings of "Astronomy with megastructures: Joint science with the E-ELT and SKA", 10-14 May 2010, Crete, Greece (Eds: Isobel Hook, Dimitra Rigopoulou, Steve Rawlings and Aris Karastergiou
    • …
    corecore