3,195 research outputs found

    VLTI/MIDI 10 micron interferometry of the forming massive star W33A

    Full text link
    We report on resolved interferometric observations with VLTI/MIDI of the massive young stellar object (MYSO) W33A. The MIDI observations deliver spectrally dispersed visibilities with values between 0.03 and 0.06, for a baseline of 45m over the wavelength range 8-13 micron. The visibilities indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron which increases to 240AU at 13 micron, scales previously unexplored among MYSOs. This observed trend is consistent with the temperature falling off with distance. 1D dust radiative transfer models are simultaneously fit to the visibility spectrum, the strong silicate feature and the shape of the mid infrared spectral energy distribution (SED). For any powerlaw density distribution, we find that the sizes (as implied by the visibilities) and the stellar luminosity are incompatible. A reduction to a third of W33A's previously adopted luminosity is required to match the visibilities; such a reduction is consistent with new high resolution 70 micron data from Spitzer's MIPSGAL survey. We obtain best fits for models with shallow dust density distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the silicate feature produced by decreasing the ISM ratio of graphite to silicates and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter

    Some Further Results for the Stationary Points and Dynamics of Supercooled Liquids

    Full text link
    We present some new theoretical and computational results for the stationary points of bulk systems. First we demonstrate how the potential energy surface can be partitioned into catchment basins associated with every stationary point using a combination of Newton-Raphson and eigenvector-following techniques. Numerical results are presented for a 256-atom supercell representation of a binary Lennard-Jones system. We then derive analytical formulae for the number of stationary points as a function of both system size and the Hessian index, using a framework based upon weakly interacting subsystems. This analysis reveals a simple relation between the total number of stationary points, the number of local minima, and the number of transition states connected on average to each minimum. Finally we calculate two measures of localisation for the displacements corresponding to Hessian eigenvectors in samples of stationary points obtained from the Newton-Raphson-based geometry optimisation scheme. Systematic differences are found between the properties of eigenvectors corresponding to positive and negative Hessian eigenvalues, and localised character is most pronounced for stationary points with low values of the Hessian index.Comment: 16 pages, 2 figure

    The RMS Survey: Far-Infrared Photometry of Young Massive Stars

    Full text link
    Context: The Red MSX Source (RMS) survey is a multi-wavelength campaign of follow-up observations of a colour-selected sample of candidate massive young stellar objects (MYSOs) in the galactic plane. This survey is returning the largest well-selected sample of MYSOs to date, while identifying other dust contaminant sources with similar mid-infrared colours including a large number of new ultra-compact (UC)HII regions. Aims:To measure the far-infrared (IR) flux, which lies near the peak of the spectral energy distribution (SED) of MYSOs and UCHII regions, so that, together with distance information, the luminosity of these sources can be obtained. Methods:Less than 50% of RMS sources are associated with IRAS point sources with detections at 60 micron and 100 micron, though the vast majority are visible in Spitzer MIPSGAL or IRAS Galaxy Atlas (IGA) images. However, standard aperture photometry is not appropriate for these data due to crowding of sources and strong spatially variable far-IR background emission in the galactic plane. A new technique using a 2-dimensional fit to the background in an annulus around each source is therefore used to obtain far-IR photometry for young RMS sources. Results:Far-IR fluxes are obtained for a total of 1113 RMS candidates identified as young sources. Of these 734 have flux measurements using IGA 60 micron and 100 micron images and 724 using MIPSGAL 70 micron images, with 345 having measurements in both data sets.Comment: 10 pages, 10 figures, 2 Tables, accepted to A&A. A full version of table 1 is available from the lead author or at the CDS upon publicatio

    IR Dust Bubbles: Probing the Detailed Structure and Young Massive Stellar Populations of Galactic HII Regions

    Full text link
    We present an analysis of wind-blown, parsec-sized, mid-infrared bubbles and associated star-formation using GLIMPSE/IRAC, MIPSGAL/MIPS and MAGPIS/VLA surveys. Three bubbles from the Churchwell et al. (2006) catalog were selected. The relative distribution of the ionized gas (based on 20 cm emission), PAH emission (based on 8 um, 5.8 um and lack of 4.5 um emission) and hot dust (24 um emission) are compared. At the center of each bubble there is a region containing ionized gas and hot dust, surrounded by PAHs. We identify the likely source(s) of the stellar wind and ionizing flux producing each bubble based upon SED fitting to numerical hot stellar photosphere models. Candidate YSOs are also identified using SED fitting, including several sites of possible triggered star formation.Comment: 37 pages, 17 figure

    UTP Semantics for BigrTiMo

    Get PDF

    Probing discs around massive young stellar objects with CO first overtone emission

    Full text link
    We present high resolution (R~50,000) spectroastrometry over the CO 1st overtone bandhead of a sample of seven intermediate/massive young stellar objects. These are primarily drawn from the red MSX source (RMS) survey, a systematic search for young massive stars which has returned a large, well selected sample of such objects. The mean luminosity of the sample is approximately 5 times 10^4 L_\odot, indicating the objects typically have a mass of ~15 solar masses. We fit the observed bandhead profiles with a model of a circumstellar disc, and find good agreement between the models and observations for all but one object. We compare the high angular precision (0.2-0.8 mas) spectroastrometric data to the spatial distribution of the emitting material in the best-fitting models. No spatial signatures of discs are detected, which is entirely consistent with the properties of the best-fitting models. Therefore, the observations suggest that the CO bandhead emission of massive young stellar objects originates in small-scale disks, in agreement with previous work. This provides further evidence that massive stars form via disc accretion, as suggested by recent simulations.Comment: Accepted for publication in MNRA

    Ionization of clusters in intense laser pulses through collective electron dynamics

    Full text link
    The motion of electrons and ions in medium-sized rare gas clusters (1000 atoms) exposed to intense laser pulses is studied microscopically by means of classical molecular dynamics using a hierarchical tree code. Pulse parameters for optimum ionization are found to be wavelength dependent. This resonant behavior is traced back to a collective electron oscillation inside the charged cluster. It is shown that this dynamics can be well described by a driven and damped harmonic oscillator allowing for a clear discrimination against other energy absorption mechanisms.Comment: 4 pages (4 figures

    A Branching Time Model of CSP

    Full text link
    I present a branching time model of CSP that is finer than all other models of CSP proposed thus far. It is obtained by taking a semantic equivalence from the linear time - branching time spectrum, namely divergence-preserving coupled similarity, and showing that it is a congruence for the operators of CSP. This equivalence belongs to the bisimulation family of semantic equivalences, in the sense that on transition systems without internal actions it coincides with strong bisimilarity. Nevertheless, enough of the equational laws of CSP remain to obtain a complete axiomatisation for closed, recursion-free terms.Comment: Dedicated to Bill Roscoe, on the occasion of his 60th birthda
    • …
    corecore