7,830 research outputs found

    Approximating the radiatively corrected Higgs mass in the Minimal Supersymmetric Model

    Get PDF
    To obtain the most accurate predictions for the Higgs masses in the minimal supersymmetric model (MSSM), one should compute the full set of one-loop radiative corrections, resum the large logarithms to all orders, and add the dominant two-loop effects. A complete computation following this procedure yields a complex set of formulae which must be analyzed numerically. We discuss a very simple approximation scheme which includes the most important terms from each of the three components mentioned above. We estimate that the Higgs masses computed using our scheme lie within 2 GeV of their theoretically predicted values over a very large fraction of MSSM parameter space.Comment: 31 pages, 10 embedded figures, latex with psfig.sty the complete postscript file of this preprint, including figures, is available via anonymous ftp at ftp://www-ttp.physik.uni-karlsruhe.de/ttp95-09/ttp95-09.ps or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints

    Origin of the structural phase transition in Li7La3Zr2O12

    Full text link
    Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte material with a low-conductivity tetragonal and a high-conductivity cubic phase. Using density-functional theory and variable cell shape molecular dynamics simulations, we show that the tetragonal phase stability is dependent on a simultaneous ordering of the Li ions on the Li sublattice and a volume-preserving tetragonal distortion that relieves internal structural strain. Supervalent doping introduces vacancies into the Li sublattice, increasing the overall entropy and reducing the free energy gain from ordering, eventually stabilizing the cubic phase. We show that the critical temperature for cubic phase stability is lowered as Li vacancy concentration (dopant level) is raised and that an activated hop of Li ions from one crystallographic site to another always accompanies the transition. By identifying the relevant mechanism and critical concentrations for achieving the high conductivity phase, this work shows how targeted synthesis could be used to improve electrolytic performance

    The mechanics of shuffle products and their siblings

    Full text link
    We carry on the investigation initiated in [15] : we describe new shuffle products coming from some special functions and group them, along with other products encountered in the literature, in a class of products, which we name φ\varphi-shuffle products. Our paper is dedicated to a study of the latter class, from a combinatorial standpoint. We consider first how to extend Radford's theorem to the products in that class, then how to construct their bi-algebras. As some conditions are necessary do carry that out, we study them closely and simplify them so that they can be seen directly from the definition of the product. We eventually test these conditions on the products mentioned above

    Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approach

    Full text link
    Using a quantum field theory renormalization group-like differential equation, we give a new proof of the recipe theorem for the Tutte polynomial for matroids. The solution of such an equation is in fact given by some appropriate characters of the Hopf algebra of isomorphic classes of matroids, characters which are then related to the Tutte polynomial for matroids. This Hopf algebraic approach also allows to prove, in a new way, a matroid Tutte polynomial convolution formula appearing in W. Kook {\it et. al., J. Comb. Series} {\bf B 76} (1999).Comment: 14 pages, 3 figure

    Spin Resistivity in the Frustrated J1−J2J_1-J_2 Model

    Full text link
    We study in this paper the resistivity encountered by Ising itinerant spins traveling in the so-called J1−J2J_1-J_2 frustrated simple cubic Ising lattice. For the lattice, we take into account the interactions between nearest-neighbors and next-nearest-neighbors, J1J_1 and J2J_2 respectively. Itinerant spins interact with lattice spins via a distance-dependent interaction. We also take into account an interaction between itinerant spins. The lattice is frustrated in a range of J2J_2 in which we show that it undergoes a very strong first-order transition. Using Monte Carlo simulation, we calculate the resistivity ρ\rho of the itinerant spins and show that the first-order transition of the lattice causes a discontinuity of ρ\rho.Comment: submitted for publicatio

    Space-time domain decomposition for advection-diffusion problems in mixed formulations

    Get PDF
    This paper is concerned with the numerical solution of porous-media flow and transport problems , i. e. heterogeneous, advection-diffusion problems. Its aim is to investigate numerical schemes for these problems in which different time steps can be used in different parts of the domain. Global-in-time, non-overlapping domain-decomposition methods are coupled with operator splitting making possible the different treatment of the advection and diffusion terms. Two domain-decomposition methods are considered: one uses the time-dependent Steklov--Poincar{\'e} operator and the other uses optimized Schwarz waveform relaxation (OSWR) based on Robin transmission conditions. For each method, a mixed formulation of an interface problem on the space-time interface is derived, and different time grids are employed to adapt to different time scales in the subdomains. A generalized Neumann-Neumann preconditioner is proposed for the first method. To illustrate the two methods numerical results for two-dimensional problems with strong heterogeneities are presented. These include both academic problems and more realistic prototypes for simulations for the underground storage of nuclear waste

    Improved Perturbative QCD Approach to the Bottomonium Spectrum

    Get PDF
    Recently it has been shown that the gross structure of the bottomonium spectrum is reproduced reasonably well within the non-relativistic boundstate theory based on perturbative QCD. In that calculation, however, the fine splittings and the S-P level splittings are predicted to be considerably narrower than the corresponding experimental values. We investigate the bottomonium spectrum within a specific framework based on perturbative QCD, which incorporates all the corrections up to O(alpha_S^5 m_b) and O(alpha_S^4 m_b), respectively, in the computations of the fine splittings and the S-P splittings. We find that the agreement with the experimental data for the fine splittings improves drastically due to an enhancement of the wave functions close to the origin as compared to the Coulomb wave functions. The agreement of the S-P splittings with the experimental data also becomes better. We find that natural scales of the fine splittings and the S-P splittings are larger than those of the boundstates themselves. On the other hand, the predictions of the level spacings between consecutive principal quantum numbers depend rather strongly on the scale mu of the operator \propto C_A/(m_b r^2). The agreement of the whole spectrum with the experimental data is much better than the previous predictions when mu \simeq 3-4 GeV for alpha_S(M_Z)=0.1181. There seems to be a phenomenological preference for some suppression mechanism for the above operator.Comment: 26 pages, 16 figures. Minor changes, to be published in PR

    Renormalization group-like proof of the universality of the Tutte polynomial for matroids

    Get PDF
    In this paper we give a new proof of the universality of the Tutte polynomial for matroids. This proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra characters are solutions of some differential equations which are of the same type as the differential equations used to describe the renormalization group flow in quantum field theory. This approach allows us to also prove, in a different way, a matroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999). This FPSAC contribution is an extended abstract.Comment: 12 pages, 3 figures, conference proceedings, 25th International Conference on Formal Power Series and Algebraic Combinatorics, Paris, France, June 201
    • 

    corecore