483 research outputs found

    The Grism Lens-Amplified Survey from Space (GLASS). XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at z > 1

    Get PDF
    Modern data empower observers to describe galaxies as the spatially and biographically complex objects they are. We illustrate this through case studies of four, z1.3z\sim1.3 systems based on deep, spatially resolved, 17-band + G102 + G141 Hubble Space Telescope grism spectrophotometry. Using full spectrum rest-UV/-optical continuum fitting, we characterize these galaxies' observed \simkpc-scale structures and star formation rates (SFRs) and reconstruct their history over the age of the universe. The sample's diversity---passive to vigorously starforming; stellar masses logM/M=10.5\log M_*/M_\odot=10.5 to 11.211.2---enables us to draw spatio-temporal inferences relevant to key areas of parameter space (Milky Way- to super-Andromeda-mass progenitors). Specifically, we find signs that bulge mass-fractions (B/TB/T) and SF history shapes/spatial uniformity are linked, such that higher B/TB/Ts correlate with "inside-out growth" and central specific SFRs that peaked above the global average for all starforming galaxies at that epoch. Conversely, the system with the lowest B/TB/T had a flat, spatially uniform SFH with normal peak activity. Both findings are consistent with models positing a feedback-driven connection between bulge formation and the switch from rising to falling SFRs ("quenching"). While sample size forces this conclusion to remain tentative, this work provides a proof-of-concept for future efforts to refine or refute it: JWST, WFIRST, and the 30-m class telescopes will routinely produce data amenable to this and more sophisticated analyses. These samples---spanning representative mass, redshift, SFR, and environmental regimes---will be ripe for converting into thousands of sub-galactic-scale empirical windows on what individual systems actually looked like in the past, ushering in a new dialog between observation and theory.Comment: 18 pp, 15 figs, 3 tables (main text); 5 pp, 5 figs, 1 table (appendix); Submitted to AAS Journals 1 October 201

    The Grism Lens-Amplified Survey from Space (GLASS). I. Survey overview and first data release

    Get PDF
    We give an overview of the Grism Lens Amplified Survey from Space (GLASS), a large Hubble Space Telescope program aimed at obtaining grism spectroscopy of the fields of ten massive clusters of galaxies at redshift z=0.308-0.686, including the Hubble Frontier Fields (HFF). The Wide Field Camera 3 yields near infrared spectra of the cluster cores, covering the wavelength range 0.81-1.69mum through grisms G102 and G141, while the Advanced Camera for Surveys in parallel mode provides G800L spectra of the infall regions of the clusters. The WFC3 spectra are taken at two almost orthogonal position angles in order to minimize the effects of confusion. After summarizing the scientific drivers of GLASS, we describe the sample selection as well as the observing strategy and data processing pipeline. We then utilize MACSJ0717.5+3745, a HFF cluster and the first one observed by GLASS, to illustrate the data quality and the high-level data products. Each spectrum brighter than H_AB=23 is visually inspected by at least two co-authors and a redshift is measured when sufficient information is present in the spectra. Furthermore, we conducted a thorough search for emission lines through all the GLASS WFC3 spectra with the aim of measuring redshifts for sources with continuum fainter than H_AB=23. We provide a catalog of 139 emission-line based spectroscopic redshifts for extragalactic sources, including three new redshifts of multiple image systems (one probable, two tentative). In addition to the data itself we also release software tools that are helpful to navigate the data.Comment: ApJ in press. GLASS data available at https://archive.stsci.edu/prepds/glass/ . More info on GLASS available at http://glass.physics.ucsb.edu

    Stellar Rotation in Young Clusters. II. Evolution of Stellar Rotation and Surface Helium Abundance

    Get PDF
    We derive the effective temperatures and gravities of 461 OB stars in 19 young clusters by fitting the H-gamma profile in their spectra. We use synthetic model profiles for rotating stars to develop a method to estimate the polar gravity for these stars, which we argue is a useful indicator of their evolutionary status. We combine these results with projected rotational velocity measurements obtained in a previous paper on these same open clusters. We find that the more massive B-stars experience a spin down as predicted by the theories for the evolution of rotating stars. Furthermore, we find that the members of binary stars also experience a marked spin down with advanced evolutionary state due to tidal interactions. We also derive non-LTE-corrected helium abundances for most of the sample by fitting the He I 4026, 4387, 4471 lines. A large number of helium peculiar stars are found among cooler stars with Teff < 23000 K. The analysis of the high mass stars (8.5 solar masses < M < 16 solar masses) shows that the helium enrichment process progresses through the main sequence (MS) phase and is greater among the faster rotators. This discovery supports the theoretical claim that rotationally induced internal mixing is the main cause of surface chemical anomalies that appear during the MS phase. The lower mass stars appear to have slower rotation rates among the low gravity objects, and they have a large proportion of helium peculiar stars. We suggest that both properties are due to their youth. The low gravity stars are probably pre-main sequence objects that will spin up as they contract. These young objects very likely host a remnant magnetic field from their natal cloud, and these strong fields sculpt out surface regions with unusual chemical abundances.Comment: 50 pages 18 figures, accepted by Ap

    Stellar Rotation in Young Clusters. I. Evolution of Projected Rotational Velocity Distributions

    Full text link
    Open clusters offer us the means to study stellar properties in samples with well-defined ages and initial chemical composition. Here we present a survey of projected rotational velocities for a large sample of mainly B-type stars in young clusters to study the time evolution of the rotational properties of massive stars. The survey is based upon moderate resolution spectra made with the WIYN 3.5 m and CTIO 4 m telescopes and Hydra multi-object spectrographs, and the target stars are members of 19 young open clusters with an age range of approximately 6 to 73 Myr. We made fits of the observed lines He I 4026, 4387, 4471 and Mg II 4481 using model theoretical profiles to find projected rotational velocities for a total of 496 OB stars. We find that there are fewer slow rotators among the cluster B-type stars relative to nearby B stars in the field. We present evidence consistent with the idea that the more massive B stars (M > 9 solar masses) spin down during their main sequence phase. However, we also find that the rotational velocity distribution appears to show an increase in the numbers of rapid rotators among clusters with ages of 10 Myr and higher. These rapid rotators appear to be distributed between the zero age and terminal age main sequence locations in the Hertzsprung-Russell diagram, and thus only a minority of them can be explained as the result of a spin up at the terminal age main sequence due to core contraction. We suggest instead that some of these rapid rotators may have been spun up through mass transfer in close binary systems.Comment: 33 pages, 11 figures, accepted by Ap

    Strategies for Improving Visual Inspection Performance

    Get PDF
    This paper summarizes recent results obtained in inspection studies including several studies performed by the authors. Both static and dynamic visual inspection tasks are included. Based on these results, a proposed new integrated design procedure for inspection tasks that will approach the optimal design has been formulated. The review of recent research results includes the following primary variables: the speed of the item passing the inspector, the spacing of items, the percentage of defective items, the illumination level, the contrast between the item being inspected and the background, and the effectiveness of individual versus group inspection. The authors have used their research results in combination with the results in the literature to formulate new integrated procedures for designing inspection stations and job procedures. The authors have also analyzed the effects of inspector performance on the overall quality control plans already in use in industry. The economic effects of changes in inspector performance which result from redesign of the inspection task are then demonstrated as a part of the overall design procedure.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    The Distances to Open Clusters from Main-Sequence Fitting. IV. Galactic Cepheids, the LMC, and the Local Distance Scale

    Full text link
    We derive the basic properties of seven Galactic open clusters containing Cepheids and construct their period-luminosity (P-L) relations. For our cluster main-sequence fitting we extend previous Hyades-based empirical color-temperature corrections to hotter stars using the Pleiades as a template. We use BVI_{C}JHK_{s} data to test the reddening law, and include metallicity effects to perform a more comprehensive study for our clusters than prior efforts. The ratio of total to selective extinction R_V that we derive is consistent with expectations. Assuming the LMC P-L slopes, we find = -3.93 +/- 0.07 (statistical) +/- 0.14 (systematic) for 10-day period Cepheids, which is generally fainter than those in previous studies. Our results are consistent with recent HST and Hipparcos parallax studies when using the Wesenheit magnitudes W(VI). Uncertainties in reddening and metallicity are the major remaining sources of error in the V-band P-L relation, but a higher precision could be obtained with deeper optical and near-infrared cluster photometry. We derive distances to NGC4258, the LMC, and M33 of (m - M)_0 = 29.28 +/- 0.10, 18.34 +/- 0.06, and 24.55 +/- 0.28, respectively, with an additional systematic error of 0.16 mag in the P-L relations. The distance to NGC4258 is in good agreement with the geometric distance derived from water masers [\Delta (m - M)_0 = 0.01 +/- 0.24]; our value for M33 is less consistent with the distance from an eclipsing binary [\Delta (m - M)_0 = 0.37 +/- 0.34]; our LMC distance is moderately shorter than the adopted distance in the HST Key Project, which formally implies an increase in the Hubble constant of 7% +/- 8%.Comment: 28 pages, 21 figures; accepted for publication in the Ap

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope

    Labelled drug-related public expenditure in relation to gross domestic product (gdp) in Europe: A luxury good?

    Get PDF
    "Labelled drug-related public expenditure" is the direct expenditure explicitly labelled as related to illicit drugs by the general government of the state. As part of the reporting exercise corresponding to 2005, the European Monitoring Centre for Drugs and Drug Addiction's network of national focal points set up in the 27 European Union (EU) Member States, Norway, and the candidates countries to the EU, were requested to identify labelled drug-related public expenditure, at the country level. This was reported by 10 countries categorised according to the functions of government, amounting to a total of EUR 2.17 billion. Overall, the highest proportion of this total came within the government functions of Health (66%), and Public Order and Safety (POS) (20%). By country, the average share of GDP was 0.023% for Health, and 0.013% for POS. However, these shares varied considerably across countries, ranging from 0.00033% in Slovakia, up to 0.053% of GDP in Ireland in the case of Health, and from 0.003% in Portugal, to 0.02% in the UK, in the case of POS; almost a 161-fold difference between the highest and the lowest countries for Health, and a 6-fold difference for POS. Why do Ireland and the UK spend so much in Health and POS, or Slovakia and Portugal so little, in GDP terms? To respond to this question and to make a comprehensive assessment of drug-related public expenditure across countries, this study compared Health and POS spending and GDP in the 10 reporting countries. Results found suggest GDP to be a major determinant of the Health and POS drug-related public expenditures of a country. Labelled drug-related public expenditure showed a positive association with the GDP across the countries considered: r = 0.81 in the case of Health, and r = 0.91 for POS. The percentage change in Health and POS expenditures due to a one percent increase in GDP (the income elasticity of demand) was estimated to be 1.78% and 1.23% respectively. Being highly income elastic, Health and POS expenditures can be considered luxury goods; as a nation becomes wealthier it openly spends proportionately more on drug-related health and public order and safety interventions

    The Palomar Testbed Interferometer Calibrator Catalog

    Get PDF
    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional 140\approx 140 being rejected), corresponding to 95\gtrsim 95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n
    corecore