28,185 research outputs found

    Spinor Bose Condensates in Optical Traps

    Full text link
    In an optical trap, the ground state of spin-1 Bosons such as 23^{23}Na, 39^{39}K, and 87^{87}Rb can be either a ferromagnetic or a "polar" state, depending on the scattering lengths in different angular momentum channel. The collective modes of these states have very different spin character and spatial distributions. While ordinary vortices are stable in the polar state, only those with unit circulation are stable in the ferromagnetic state. The ferromagnetic state also has coreless (or Skyrmion) vortices like those of superfluid 3^{3}He-A. Current estimates of scattering lengths suggest that the ground states of 23^{23}Na and 87^{87}Rb condensate are a polar state and a ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]

    A Search for Active Galactic Nuclei in Sc Galaxies with H II Spectra

    Get PDF
    (Abridged) We have searched for nuclear radio emission from a statistically complete sample of 40 Sc galaxies within 30 Mpc that are optically classified as star-forming objects, in order to determine whether weak AGNs might be present. Only three nuclear radio sources were detected, in NGC 864, NGC 4123, and NGC 4535. These galaxies have peak 6-cm radio powers of 10^{20} W/Hz at arcsecond resolution, while upper limits of the non-detected galaxies typically range from 10^{18.4} to 10^{20} W/Hz. The three nuclear radio sources all are resolved and appear to have diffuse morphologies, with linear sizes of ~300 pc. This strongly indicates that circumnuclear star formation has been detected in these three H II galaxies. Comparison with previous 20-cm VLA results for the detected galaxies shows that the extended nuclear radio emission has a flat spectrum in two objects, and almost certainly is generated by thermal emission from gas ionized by young stars in the centers of those galaxies. The 6-cm radio powers are comparable to predictions for thermal emission that are based on the nuclear H-alpha luminosities, and imply nuclear star formation rates of 0.08-0.8 solar masses/yr, while the low-resolution NRAO VLA Sky Survey implies galaxy-wide star formation rates of 0.3-1.0 solar masses/yr in stars above 5 solar masses. Although the presence of active nuclei powered by massive black holes cannot be definitively ruled out, the present results suggest that they are likely to be rare in these late-type galaxies with H II spectra.Comment: To appear in ApJ. 7 page

    Similarity solutions of Fokker-Planck equation with time-dependent coefficients

    Full text link
    In this work, we consider the solvability of the Fokker-Planck equation with both time-dependent drift and diffusion coefficients by means of the similarity method. By the introduction of the similarity variable, the Fokker-Planck equation is reduced to an ordinary differential equation. Adopting the natural requirement that the probability current density vanishes at the boundary, the resulted ordinary differential equation turns out to be integrable, and the probability density function can be given in closed form. New examples of exactly solvable Fokker-Planck equations are presented, and their properties analyzed.Comment: 13 pages, 8 figures. Version to appear in Ann. Phys. Presentation improved. Discussions and figures of easy examples remove

    Existence of Long-Range Order for Trapped Interacting Bosons

    Full text link
    We derive an inequality governing ``long range'' order for a localized Bose-condensed state, relating the condensate fraction at a given temperature with effective curvature radius of the condensate and total particle number. For the specific example of a one-dimensional, harmonically trapped dilute Bose condensate, it is shown that the inequality gives an explicit upper bound for the Thomas-Fermi condensate size which may be tested in current experiments.Comment: 4 pages, 1 figure, RevTex4. Title changed at the request of editors; to appear in Phys. Rev. Letter

    Laser induced spark ignition of methane-oxygen mixtures

    Get PDF
    Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed

    Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes

    Get PDF
    Oat straw cellulose pulp was cationized in an etherification reaction with chlorocholine chloride. The cationized cellulose pulp was then mechanically disintegrated in two process steps to obtain trimethylammonium-modified nanofibrillated cellulose (TMA-NFC). The materials thus obtained were analyzed by elemental analysis, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and other techniques. A higher nitrogen content of TMA-NFC samples was found by XPS analysis than by elemental analysis, which indicates that the modification occurred mainly on the surface of cellulose fibrils. XPS also confirmed the existence of ammonium groups in the samples. SEM provided images of very fine network structures of TMA-NFC, which affirmed the positive effect of ionic charge on mechanical disintegration process. According to XRD and SEM results, no severe degradation of the cellulose occurred, even at high reaction temperatures. Because of the different properties of the cationic NFC compared to negatively charged native cellulose fibers, TMA-NFC may find broad applications in technical areas, for instance in combination with anionic species, such as fillers or dyes. Indeed, TMA-NFC seems to improve the distribution of clay fillers in NFC matri

    Quantum Hall Ferromagnets

    Full text link
    It is pointed out recently that the ν=1/m\nu=1/m quantum Hall states in bilayer systems behave like easy plane quantum ferromagnets. We study the magnetotransport of these systems using their ``ferromagnetic" properties and a novel spin-charge relation of their excitations. The general transport is a combination of the ususal Hall transport and a time dependent transport with quantizedquantized time average. The latter is due to a phase slippage process in spacetimespacetime and is characterized by two topological constants. (Figures will be provided upon requests).Comment: 4 pages, Revtex, Ohio State Universit
    corecore