505 research outputs found

    Scalar Field Theory on Fuzzy S^4

    Get PDF
    Scalar fields are studied on fuzzy S4S^4 and a solution is found for the elimination of the unwanted degrees of freedom that occur in the model. The resulting theory can be interpreted as a Kaluza-Klein reduction of CP^3 to S^4 in the fuzzy context.Comment: 16 pages, LaTe

    Therapeutic capsule endoscopy: Opportunities and challenges

    Get PDF
    10.1260/2040-2295.2.4.459Journal of Healthcare Engineering24459-47

    Noncommutative gravity: fuzzy sphere and others

    Get PDF
    Gravity on noncommutative analogues of compact spaces can give a finite mode truncation of ordinary commutative gravity. We obtain the actions for gravity on the noncommutative two-sphere and on the noncommutative CP2{\bf CP}^2 in terms of finite dimensional (N×N)(N\times N)-matrices. The commutative large NN limit is also discussed.Comment: LaTeX, 13 pages, section on CP^2 added + minor change

    The Fuzzy Sphere: From The Uncertainty Relation To The Stereographic Projection

    Full text link
    On the fuzzy sphere, no state saturates simultaneously all the Heisenberg uncertainties. We propose a weaker uncertainty for which this holds. The family of states so obtained is physically motivated because it encodes information about positions in this fuzzy context. In particular, these states realize in a natural way a deformation of the stereographic projection. Surprisingly, in the large jj limit, they reproduce some properties of the ordinary coherent states on the non commutative plane.Comment: 18 pages, Latex. Minor changes in notations. Version to appear in JHE

    Spectrum of Schroedinger field in a noncommutative magnetic monopole

    Full text link
    The energy spectrum of a nonrelativistic particle on a noncommutative sphere in the presence of a magnetic monopole field is calculated. The system is treated in the field theory language, in which the one-particle sector of a charged Schroedinger field coupled to a noncommutative U(1) gauge field is identified. It is shown that the Hamiltonian is essentially the angular momentum squared of the particle, but with a nontrivial scaling factor appearing, in agreement with the first-quantized canonical treatment of the problem. Monopole quantization is recovered and identified as the quantization of a commutative Seiberg-Witten mapped monopole field.Comment: 16 pages; references adde

    MOSSES OF GUNUNG HALIMUN NATIONAL PARK, WEST JAVA, INDONESIA

    Get PDF
    TAN, BENITO C.; HO, BOON-CHUAN; LINIS, VIRGILIO;ISKANDAR, EKA A.P.; NURHASANAH, IPAH; DAMAYANTI, LIA; MULYATI,SRI; HAERIDA, IDA. 2006. Mosses of Gunung Halimun National Park,West Java, Indonesia. Reinwardtia 12(3): 205–214.––150 species of mosses in 74 genera and 25 families are reported for the first time from Gunung Halimun National Park(GHNP)in West Java.Three mosses are new to the Indonesia flora (Distichophyllum collenchymatosum, D. malayense and Fissidens kinabaluensis),and another four mosses represent new records for Java (Dicranodontium asperulum, Daltonia armata, Glossadelphus bilobatus and Syrrhopodon semiliber).In additions, seven can be classified as uncommon mosses in the Malesian region. This shows that the forests of GHNP deserve a high priority of protection not only for the island of Java, but also for Indonesia and Malesia as well

    Development of a tight-binding potential for bcc-Zr. Application to the study of vibrational properties

    Get PDF
    We present a tight-binding potential based on the moment expansion of the density of states, which includes up to the fifth moment. The potential is fitted to bcc and hcp Zr and it is applied to the computation of vibrational properties of bcc-Zr. In particular, we compute the isothermal elastic constants in the temperature range 1200K < T < 2000K by means of standard Monte Carlo simulation techniques. The agreement with experimental results is satisfactory, especially in the case of the stability of the lattice with respect to the shear associated with C'. However, the temperature decrease of the Cauchy pressure is not reproduced. The T=0K phonon frequencies of bcc-Zr are also computed. The potential predicts several instabilities of the bcc structure, and a crossing of the longitudinal and transverse modes in the (001) direction. This is in agreement with recent ab initio calculations in Sc, Ti, Hf, and La.Comment: 14 pages, 6 tables, 4 figures, revtex; the kinetic term of the isothermal elastic constants has been corrected (Eq. (4.1), Table VI and Figure 4

    One-way multigrid method in electronic structure calculations

    Get PDF
    We propose a simple and efficient one-way multigrid method for self-consistent electronic structure calculations based on iterative diagonalization. Total energy calculations are performed on several different levels of grids starting from the coarsest grid, with wave functions transferred to each finer level. The only changes compared to a single grid calculation are interpolation and orthonormalization steps outside the original total energy calculation and required only for transferring between grids. This feature results in a minimal amount of code change, and enables us to employ a sophisticated interpolation method and noninteger ratio of grid spacings. Calculations employing a preconditioned conjugate gradient method are presented for two examples, a quantum dot and a charged molecular system. Use of three grid levels with grid spacings 2h, 1.5h, and h decreases the computer time by about a factor of 5 compared to single level calculations.Comment: 10 pages, 2 figures, to appear in Phys. Rev. B, Rapid Communication

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie
    corecore