22 research outputs found
Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response.
Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.This work was funded by a Cambridge-
KAUST Academic Excellence Alliance (AEA2) project
grant to AP and CVA was supported by a Cambridge
Overseas Trust Studentship. JA was supported by a
Darwin Trust of Edinburgh. WJP was supported by a
Medical Research Council. FMJ was supported by Royal Society Research. EASIH is supported by
Cambridge NIHR-BRC. The Wellcome Trust Centre
for Human Genetics is funded by Wellcome Trust
grant reference 090532/Z/09/Z and MRC hub grant
G0900747 91070. The funders had no role in the
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.his is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.ppat.100476
HIV-1 gp120 N-linked glycosylation differs between plasma and leukocyte compartments
<p>Abstract</p> <p>Background</p> <p>N-linked glycosylation is a major mechanism for minimizing virus neutralizing antibody response and is present on the Human Immunodeficiency Virus (HIV) envelope glycoprotein. Although it is known that glycosylation changes can dramatically influence virus recognition by the host antibody, the actual contribution of compartmental differences in N-linked glycosylation patterns remains unclear.</p> <p>Methodology and Principal Findings</p> <p>We amplified the <it>env </it>gp120 C2-V5 region and analyzed 305 clones derived from plasma and other compartments from 15 HIV-1 patients. Bioinformatics and Bayesian network analyses were used to examine N-linked glycosylation differences between compartments. We found evidence for cellspecific single amino acid changes particular to monocytes, and significant variation was found in the total number of N-linked glycosylation sites between patients. Further, significant differences in the number of glycosylation sites were observed between plasma and cellular compartments. Bayesian network analyses showed an interdependency between N-linked glycosylation sites found in our study, which may have immense functional relevance.</p> <p>Conclusion</p> <p>Our analyses have identified single cell/compartment-specific amino acid changes and differences in N-linked glycosylation patterns between plasma and diverse blood leukocytes. Bayesian network analyses showed associations inferring alternative glycosylation pathways. We believe that these studies will provide crucial insights into the host immune response and its ability in controlling HIV replication <it>in vivo</it>. These findings could also have relevance in shielding and evasion of HIV-1 from neutralizing antibodies.</p
The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance
Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome assembly and annotation of S. pimpinellifolium ‘LA0480.’ Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. The ‘LA0480’ genome assembly size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the ‘LA0480’ protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in ‘LA0480.’ Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness
SiteSeek: Post-translational modification analysis using adaptive locality-effective kernel methods and new profiles
<p>Abstract</p> <p>Background</p> <p>Post-translational modifications have a substantial influence on the structure and functions of protein. Post-translational phosphorylation is one of the most common modification that occur in intracellular proteins. Accurate prediction of protein phosphorylation sites is of great importance for the understanding of diverse cellular signalling processes in both the human body and in animals. In this study, we propose a new machine learning based protein phosphorylation site predictor, SiteSeek. SiteSeek is trained using a novel compact evolutionary and hydrophobicity profile to detect possible protein phosphorylation sites for a target sequence. The newly proposed method proves to be more accurate and exhibits a much stable predictive performance than currently existing phosphorylation site predictors.</p> <p>Results</p> <p>The performance of the proposed model was compared to nine existing different machine learning models and four widely known phosphorylation site predictors with the newly proposed PS-Benchmark_1 dataset to contrast their accuracy, sensitivity, specificity and correlation coefficient. SiteSeek showed better predictive performance with 86.6% accuracy, 83.8% sensitivity, 92.5% specificity and 0.77 correlation-coefficient on the four main kinase families (CDK, CK2, PKA, and PKC).</p> <p>Conclusion</p> <p>Our newly proposed methods used in SiteSeek were shown to be useful for the identification of protein phosphorylation sites as it performed much better than widely known predictors on the newly built PS-Benchmark_1 dataset.</p
Hierarchical kernel mixture models for the prediction of AIDS disease progression using HIV structural gp120 profiles
Abstract Changes to the glycosylation profile on HIV gp120 can influence viral pathogenesis and alter AIDS disease progression. The characterization of glycosylation differences at the sequence level is inadequate as the placement of carbohydrates is structurally complex. However, no structural framework is available to date for the study of HIV disease progression. In this study, we propose a novel machine-learning based framework for the prediction of AIDS disease progression in three stages (RP, SP, and LTNP) using the HIV structural gp120 profile. This new intelligent framework proves to be accurate and provides an important benchmark for predicting AIDS disease progression computationally. The model is trained using a novel HIV gp120 glycosylation structural profile to detect possible stages of AIDS disease progression for the target sequences of HIV+ individuals. The performance of the proposed model was compared to seven existing different machine-learning models on newly proposed gp120-Benchmark_1 dataset in terms of error-rate (MSE), accuracy (CCI), stability (STD), and complexity (TBM). The novel framework showed better predictive performance with 67.82% CCI, 30.21 MSE, 0.8 STD, and 2.62 TBM on the three stages of AIDS disease progression of 50 HIV+ individuals. This framework is an invaluable bioinformatics tool that will be useful to the clinical assessment of viral pathogenesis.</p
Data from: Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping
High-throughput phenotyping produces multiple measurements over time, which require new methods of analyses that are flexible in their quantification of plant growth and transpiration, yet are computationally economic. Here we develop such analyses and apply this to a rice population genotyped with a 700k SNP high-density array. Two rice diversity panels, indica and aus, containing a total of 553 genotypes, are phenotyped in waterlogged conditions. Using cubic smoothing splines to estimate plant growth and transpiration, we identify four time intervals that characterize the early responses of rice to salinity. Relative growth rate, transpiration rate and transpiration use efficiency (TUE) are analysed using a new association model that takes into account the interaction between treatment (control and salt) and genetic marker. This model allows the identification of previously undetected loci affecting TUE on chromosome 11, providing insights into the early responses of rice to salinity, in particular into the effects of salinity on plant growth and transpiration
Immune-related genes that are differentially expressed in response to <i>B</i>. <i>malayi</i> infection.
<p>Immune-related genes are from the ImmunoDB database or manual curation, and only those that are significantly differentially expressed for either or both genotypes (or have a significant interaction term) are shown. Expression is log<sub>2</sub> fold-change in response to <i>B</i>. <i>malayi</i>, with genes in blue being upregulated and genes in red being downregulated. Grey means insufficient coverage to estimate expression. (A) At 12 hours post infection, almost all genes are being expressed in the same direction and with similar magnitudes. (B) At 48 hours, a subset of genes are being expressed differently in response to infection. The green boxes indicate statistical significance in susceptible mosquitoes (left, FDR<0.2), resistant mosquitoes (middle, FDR<0.2) or a significant interaction (dark green right, <i>P</i><0.01).</p