1,104 research outputs found

    Global Water Vapor Estimates from Measurements from Active GPS RO Sensors and Passive Infrared and Microwave Sounders

    Get PDF
    Water vapor plays an important role in both climate change processes and atmospheric chemistry and photochemistry. Global water vapor vertical profile can be derived from satellite infrared and microwave sounders. However, no single remote sensing technique is capable of completely fulfilling the needs for numerical weather prediction, chemistry, and climate studies in terms of vertical resolution, spatial and temporal coverage, and accuracy. In addition to the passive infrared and microwave sounder observations, the active global positioning system (GPS) radio occultation (RO) technique can also provide all-weather temperature and moisture profiles. In this chapter, we describe the current developments of global water vapor vertical profile and total precipitable water derived from active GPS RO measurements. In addition, we also demonstrate the potential improvement of global water vapor estimates using combined active GPS RO and passive IR/MW particularly from Atmospheric InfraRed Sounder (AIRS) and Advanced Technology Microwave Sounder (ATMS) measurements. Results show that because RO data are very sensitive to water vapor variation in the moisture rich troposphere, the RO data are able to provide extra water vapor information for the combined AIRS/ATMS and RO retrievals in the lower troposphere

    Diagnosis, Feedback, Adaptation: A Human-in-the-Loop Framework for Test-Time Policy Adaptation

    Full text link
    Policies often fail due to distribution shift -- changes in the state and reward that occur when a policy is deployed in new environments. Data augmentation can increase robustness by making the model invariant to task-irrelevant changes in the agent's observation. However, designers don't know which concepts are irrelevant a priori, especially when different end users have different preferences about how the task is performed. We propose an interactive framework to leverage feedback directly from the user to identify personalized task-irrelevant concepts. Our key idea is to generate counterfactual demonstrations that allow users to quickly identify possible task-relevant and irrelevant concepts. The knowledge of task-irrelevant concepts is then used to perform data augmentation and thus obtain a policy adapted to personalized user objectives. We present experiments validating our framework on discrete and continuous control tasks with real human users. Our method (1) enables users to better understand agent failure, (2) reduces the number of demonstrations required for fine-tuning, and (3) aligns the agent to individual user task preferences.Comment: International Conference on Machine Learning (ICML) 202

    Evaluation of total column water vapour products from satellite observations and reanalyses within the GEWEX Water Vapor Assessment

    Get PDF
    Since 2011, the Global Energy and Water cycle Exchanges (GEWEX) Water Vapor Assessment (G-VAP) has provided performance analyses for state-of-the-art reanalysis and satellite water vapour products to the GEWEX Data and Analysis Panel (GDAP) and the user community in general. A significant component of the work undertaken by G-VAP is to characterise the quality and uncertainty of these water vapour records to (i) ensure full exploitation and (ii) avoid incorrect use or interpretation of results. This study presents results from the second phase of G-VAP, where we have extended and expanded our analysis of total column water vapour (TCWV) from phase 1, in conjunction with updating the G-VAP archive. For version 2 of the archive, we consider 28 freely available and mature satellite and reanalysis data products, remapped to a regular longitude–latitude grid of 2° × 2° and on monthly time steps between January 1979 and December 2019. We first analysed all records for a “common” short period of 5 years (2005–2009), focusing on variability (spatial and seasonal) and deviation from the ensemble mean. We observed that clear-sky daytime-only satellite products were generally drier than the ensemble mean, and seasonal variability/disparity in several regions up to 12 kg m−2 related to original spatial resolution and temporal sampling. For 11 of the 28 data records, further analysis was undertaken between 1988–2014. Within this “long period”, key results show (i) trends between −1.18 ± 0.68 to 3.82 ± 3.94 kg m−2 per decade and −0.39 ± 0.27 to 1.24 ± 0.85 kg m−2 per decade were found over ice-free global oceans and land surfaces, respectively, and (ii) regression coefficients of TCWV against surface temperatures of 6.17 ± 0.24 to 27.02 ± 0.51 % K−1 over oceans (using sea surface temperature) and 3.00 ± 0.17 to 7.77 ± 0.16 % K−1 over land (using surface air temperature). It is important to note that trends estimated within G-VAP are used to identify issues in the data records rather than analyse climate change. Additionally, breakpoints have been identified and characterised for both land and ocean surfaces within this period. Finally, we present a spatial analysis of correlations to six climate indices within the long period, highlighting regional areas of significant positive and negative correlation and the level of agreement among records

    Calibration of Temperature in the Lower Stratosphere from Microwave Measurements Using COSMIC Radio Occultation Data: Preliminary Results

    Full text link
    Accurate, consistent, and stable observations from different satellite missions are crucial for climate change detection. In this study, we use Global Positioning System (GPS) Radio Occultation (RO) data from the early phase of the FORMOSAT-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, which was successfully launched on 15 April 2006, to inter-calibrate Temperature in the Lower Stratosphere (TLS) taken from Advanced Microwave Sounding Unit (AMSU) microwave measurements from different satellites for potential improvements of stratospheric temperature trend analysis. Because of the limited number of COSMIC soundings in the early phase of the mission, these results are considered preliminary. In this study, we use COSMIC RO data to simulate microwave brightness temperatures for comparison with AMSU Ch9 measurements (e.g., TLS) on board NOAA15, 16, and 18. Excellent correlation was found between synthetic COSMIC brightness temperatures (Tbs) and Tbs from NOAA15, NOAA16, and NOAA18, respectively. However, systematic differences on the order of 0.7 to 2 K were found between COSMIC and AMSU observations over Antarctica. Our results demonstrate that synthetic COSMIC Tbs are very useful in identifying inter-satellite offsets among AMSU measurements from different satellites. To demonstrate the long-term stability of GPS RO data, we compare COSMIC dry temperature profiles to those from collocated CHAMP profiles, where CHAMP was launched in 2001. The fact that the CHAMPand COSMIC dry temperature difference between 500 and 10 hPa ranges from -0.35 K (at 10 hPa) to 0.25 K (at 30 hPa) and their mean difference is about -0.034 K demonstrates the long-term stability of GPS RO signals. In order to demonstrate the potential usage of the GPS RO calibrated AMSU Tbs to inter-calibrate other overlapping AMSU Tbs, we examine the uncertainty of the calibration coefficients derived from AMSU-GPS RO pairs. We found the difference between COSMIC calibrated AMSU Tbs and those from CHAMP to be in the range of __0.07 K with a 0.1 K standard deviation. This demonstrates the robustness of the calibration coefficients found from AMSU-GPS RO pairs and shows the potential to use the calibrated AMSU Tbs to calibrate other overlapping AMSU Tbs where no coincident GPS RO data are available

    The Different Nature in Seyfert 2 Galaxies With and Without Hidden Broad-Line Regions

    Full text link
    We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test if HBLR Sy2s are dominated by active galactic nuclei (AGNs), and if non-HBLR Sy2s are dominated by starbursts. We show that: (1) HBLR Sy2s have larger accretion rates than non-HBLR Sy2s; (2) HBLR Sy2s have larger \Nev λ14.32\lambda 14.32/\Neii λ12.81\lambda 12.81 and \oiv λ25.89\lambda 25.89/\Neii λ12.81\lambda 12.81 line ratios than non-HBLR Sy2s; (3) HBLR Sy2s have smaller IRASIRAS f60/f25f_{60}/f_{25} flux ratio which shows the relative strength of the host galaxy and nuclear emission than non-HBLR Sy2s. So we suggest that HBLR Sy2s and non-HBLR Sy2s are AGN-dominated and starburst-dominated, respectively. In addition, non-HBLR Sy2s can be classified into the luminous (L[OIII]>1041ergss1L_{\rm [O III]}>10^{41} \rm ergs s^{-1}) and less luminous (L[OIII]<1041ergss1L_{\rm [O III]}<10^{41} \rm ergs s^{-1}) samples, when considering only their obscuration. We suggest that: (1) the invisibility of polarized broad lines (PBLs) in the luminous non-HBLR Sy2s depends on the obscuration; (2) the invisibility of PBLs in the less luminous non-HBLR Sy2s depends on the very low Eddington ratio rather than the obscuration.Comment: Accepted by ApJ, 11 pages, 4 figure

    Radiometer Calibration Using Colocated GPS Radio Occultation Measurements

    Get PDF
    We present a new high-fidelity method of calibrating a cross-track scanning microwave radiometer using Global Positioning System (GPS) radio occultation (GPSRO) measurements. The radiometer and GPSRO receiver periodically observe the same volume of atmosphere near the Earth's limb, and these overlapping measurements are used to calibrate the radiometer. Performance analyses show that absolute calibration accuracy better than 0.25 K is achievable for temperature sounding channels in the 50-60-GHz band for a total-power radiometer using a weakly coupled noise diode for frequent calibration and proximal GPSRO measurements for infrequent (approximately daily) calibration. The method requires GPSRO penetration depth only down to the stratosphere, thus permitting the use of a relatively small GPS antenna. Furthermore, only coarse spacecraft angular knowledge (approximately one degree rms) is required for the technique, as more precise angular knowledge can be retrieved directly from the combined radiometer and GPSRO data, assuming that the radiometer angular sampling is uniform. These features make the technique particularly well suited for implementation on a low-cost CubeSat hosting both radiometer and GPSRO receiver systems on the same spacecraft. We describe a validation platform for this calibration method, the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat, currently in development for the National Aeronautics and Space Administration (NASA) Earth Science Technology Office. MiRaTA will fly a multiband radiometer and the Compact TEC/Atmosphere GPS Sensor in 2015.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002
    corecore