3,552 research outputs found
The SAMI Galaxy Survey: Shocks and Outflows in a normal star-forming galaxy
We demonstrate the feasibility and potential of using large integral field
spectroscopic surveys to investigate the prevalence of galactic-scale outflows
in the local Universe. Using integral field data from SAMI and the Wide Field
Spectrograph, we study the nature of an isolated disk galaxy, SDSS
J090005.05+000446.7 (z = 0.05386). In the integral field datasets, the galaxy
presents skewed line profiles changing with position in the galaxy. The skewed
line profiles are caused by different kinematic components overlapping in the
line-of-sight direction. We perform spectral decomposition to separate the line
profiles in each spatial pixel as combinations of (1) a narrow kinematic
component consistent with HII regions, (2) a broad kinematic component
consistent with shock excitation, and (3) an intermediate component consistent
with shock excitation and photoionisation mixing. The three kinematic
components have distinctly different velocity fields, velocity dispersions,
line ratios, and electron densities. We model the line ratios, velocity
dispersions, and electron densities with our MAPPINGS IV shock and
photoionisation models, and we reach remarkable agreement between the data and
the models. The models demonstrate that the different emission line properties
are caused by major galactic outflows that introduce shock excitation in
addition to photoionisation by star-forming activities. Interstellar shocks
embedded in the outflows shock-excite and compress the gas, causing the
elevated line ratios, velocity dispersions, and electron densities observed in
the broad kinematic component. We argue from energy considerations that, with
the lack of a powerful active galactic nucleus, the outflows are likely to be
driven by starburst activities. Our results set a benchmark of the type of
analysis that can be achieved by the SAMI Galaxy Survey on large numbers of
galaxies.Comment: 17 pages, 15 figures. Accepted to MNRAS. References update
Influenza H5N1 and H1N1 Virus Replication and Innate Immune Responses in Bronchial Epithelial Cells Are Influenced by the State of Differentiation
Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE) cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004) and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998), the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of α2-6-linked sialic acid receptors and human airway trypsin-like (HAT) protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the epithelium regeneration, the data generated from the undifferentiated NHBE cultures may also be relevant to disease pathogenesis
New Mechanism for Electronic Energy Relaxation in Nanocrystals
The low-frequency vibrational spectrum of an isolated nanometer-scale solid
differs dramatically from that of a bulk crystal, causing the decay of a
localized electronic state by phonon emission to be inhibited. We show,
however, that an electron can also interact with the rigid translational motion
of a nanocrystal. The form of the coupling is dictated by the equivalence
principle and is independent of the ordinary electron-phonon interaction. We
calculate the rate of nonradiative energy relaxation provided by this mechanism
and establish its experimental observability.Comment: 4 pages, Submitted to Physical Review
The Sloan Digital Sky Survey Reverberation Mapping Project: No Evidence for Evolution in the M-sigma Relation to z~1
We present host stellar velocity dispersion measurements for a sample of 88
broad-line quasars at 0.10.6) from the Sloan Digital Sky Survey
Reverberation Mapping (SDSS-RM) project. High signal-to-noise ratio coadded
spectra (average S/N~30 per 69 km/s pixel) from SDSS-RM allowed decomposition
of the host and quasar spectra, and measurement of the host stellar velocity
dispersions and black hole (BH) masses using the single-epoch (SE) virial
method. The large sample size and dynamic range in luminosity
(L5100=10^(43.2-44.7) erg/s) lead to the first clear detection of a correlation
between SE virial BH mass and host stellar velocity dispersion far beyond the
local universe. However, the observed correlation is significantly flatter than
the local relation, suggesting that there are selection biases in high-z
luminosity-threshold quasar samples for such studies. Our uniform sample and
analysis enable an investigation of the redshift evolution of the M-sigma
relation free of caveats by comparing different samples/analyses at disjoint
redshifts. We do not observe evolution of the M-sigma relation in our sample,
up to z~1, but there is an indication that the relation flattens towards higher
redshifts. Coupled with the increasing threshold luminosity with redshift in
our sample, this again suggests certain selection biases are at work, and
simple simulations demonstrate that a constant M-sigma relation is favored to
z~1. Our results highlight the scientific potential of deep coadded
spectroscopy from quasar monitoring programs, and offer a new path to probe the
co-evolution of BHs and galaxies at earlier times.Comment: replaced with the accepted version (minor changes and updated
references); ApJ in press; changed title to highlight the main resul
The Type Ic Supernova 1994I in M51: Detection of Helium and Spectral Evolution
We present a series of spectra of SN 1994I in M51, starting 1 week prior to maximum brightness. The nebular phase began about 2 months after the explosion; together with the rapid decline of the optical light, this suggests that the ejected mass was small. Although lines of He I in the optical region are weak or absent, consistent with the Type Ic classification, we detect strong He I λ10830 absorption during the first month past maximum. Thus, if SN 1994I is a typical Type Ic supernova, the atmospheres of these objects cannot be completely devoid of helium. The emission-line widths are smaller than predicted by the model of Nomoto and coworkers, in which the iron core of a low-mass carbon-oxygen star collapses. They are, however, larger than in Type Ib supernovae
AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software.
Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (
Quantum and Classical Orientational Ordering in Solid Hydrogen
We present a unified view of orientational ordering in phases I, II, and III
of solid hydrogen. Phases II and III are orientationally ordered, while the
ordering objects in phase II are angular momenta of rotating molecules, and in
phase III the molecules themselves. This concept provides quantitative
explanation of the vibron softening, libron and roton spectra, and increase of
the IR vibron oscillator strength in phase III. The temperature dependence of
the effective charge parallels the frequency shifts of the IR and Raman
vibrons. All three quantities are linear in the order parameter.Comment: Replaced with the final text, accepted for publication in PRL. 1 Fig.
added. Misc. text revision
Recommended from our members
Risk‐Treatment Paradox in the Selection of Transradial Access for Percutaneous Coronary Intervention
Background: Access site complications contribute to morbidity and mortality during percutaneous coronary intervention (PCI). Transradial arterial access significantly lowers the risk of access site complications compared to transfemoral arteriotomy. We sought to develop a prediction model for access site complications in patients undergoing PCI with femoral arteriotomy, and assess whether transradial access was selectively used in patients at high risk for complications. Methods and Results: We analyzed 17 509 patients who underwent PCI without circulatory support from 2008 to 2011 at 5 institutions. Transradial arterial access was used in 17.8% of patients. In those who underwent transfemoral access, 177 (1.2%) patients had access site complications. Using preprocedural clinical and demographic data, a prediction model for femoral arteriotomy complications was generated. The variables retained in the model included: elevated age (P<0.001), female gender (P<0.001), elevated troponin (P<0.001), decreased renal function or dialysis (P=0.002), emergent PCI (P=0.01), prior PCI (P=0.005), diabetes (P=0.008), and peripheral artery disease (P=0.003). The model showed moderate discrimination (optimism‐adjusted c‐statistic=0.72) and was internally validated via bootstrap resampling. Patients with higher predicted risk of complications via transfemoral access were less likely to receive transradial access (P<0.001). Similar results were seen in patients presenting with and without ST‐segment myocardial infarction and when adjusting for individual physician operator. Conclusions: We generated and validated a model for transfemoral access site complications during PCI. Paradoxically, patients most likely to develop access site complications from transfemoral access, and therefore benefit from transradial access, were the least likely to receive transradial access
Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A
Charcot-Marie-Tooth disease type 2A (CMT2A) is an untreatable childhood peripheral neuropathy caused by mutations of the mitochondrial fusion protein, mitofusin (MFN) 2. Here, pharmacological activation of endogenous normal mitofusins overcame dominant inhibitory effects of CMT2A mutants in reprogrammed human patient motor neurons, reversing hallmark mitochondrial stasis and fragmentation independent of causa
- …