407 research outputs found
Bisphosphonates and atrial fibrillation: Bayesian meta-analyses of randomized controlled trials and observational studies
BMC Musculoskeletal Disorders10
Homogeneous Fermion Superfluid with Unequal Spin Populations
For decades, the conventional view is that an s-wave BCS superfluid can not
support uniform spin polarization due to a gap in the quasiparticle
excitation spectrum. We show that this is an artifact of the dismissal of
quasiparticle interactions in the conventional approach at the
outset. Such interactions can cause triplet fluctuations in the ground state
and hence non-zero spin polarization at "magnetic field" . The
resulting ground state is a pairing state of quasiparticles on the ``BCS
vacuum". For sufficiently large , the spin polarization of at unitarity
has the simple form . Our study is motivated by the recent
experiments at Rice which found evidence of a homogenous superfluid state with
uniform spin polarization.Comment: 4 pages, 3 figure
Development of a tight-binding potential for bcc-Zr. Application to the study of vibrational properties
We present a tight-binding potential based on the moment expansion of the
density of states, which includes up to the fifth moment. The potential is
fitted to bcc and hcp Zr and it is applied to the computation of vibrational
properties of bcc-Zr. In particular, we compute the isothermal elastic
constants in the temperature range 1200K < T < 2000K by means of standard Monte
Carlo simulation techniques. The agreement with experimental results is
satisfactory, especially in the case of the stability of the lattice with
respect to the shear associated with C'. However, the temperature decrease of
the Cauchy pressure is not reproduced. The T=0K phonon frequencies of bcc-Zr
are also computed. The potential predicts several instabilities of the bcc
structure, and a crossing of the longitudinal and transverse modes in the (001)
direction. This is in agreement with recent ab initio calculations in Sc, Ti,
Hf, and La.Comment: 14 pages, 6 tables, 4 figures, revtex; the kinetic term of the
isothermal elastic constants has been corrected (Eq. (4.1), Table VI and
Figure 4
Development and validation of measures to study the effects of the built environment on walking in Hong Kong older adults
Conference Theme: Age-friendly Cities with Cooperation & Participatio
Excess energy of an ultracold Fermi gas in a trapped geometry
We have analytically explored finite size and interparticle interaction
corrections to the average energy of a harmonically trapped Fermi gas below and
above the Fermi temperature, and have obtained a better fitting for the excess
energy reported by DeMarco and Jin [Science , 1703 (1999)]. We
have presented a perturbative calculation within a mean field approximation.Comment: 8 pages, 4 figures; Accepted in European Physical Journal
On The Mobile Behavior of Solid He at High Temperatures
We report studies of solid helium contained inside a torsional oscillator, at
temperatures between 1.07K and 1.87K. We grew single crystals inside the
oscillator using commercially pure He and He-He mixtures containing
100 ppm He. Crystals were grown at constant temperature and pressure on the
melting curve. At the end of the growth, the crystals were disordered,
following which they partially decoupled from the oscillator. The fraction of
the decoupled He mass was temperature and velocity dependent. Around 1K, the
decoupled mass fraction for crystals grown from the mixture reached a limiting
value of around 35%. In the case of crystals grown using commercially pure
He at temperatures below 1.3K, this fraction was much smaller. This
difference could possibly be associated with the roughening transition at the
solid-liquid interface.Comment: 15 pages, 6 figure
Quantum Computing with Atomic Josephson Junction Arrays
We present a quantum computing scheme with atomic Josephson junction arrays.
The system consists of a small number of atoms with three internal states and
trapped in a far-off resonant optical lattice. Raman lasers provide the
"Josephson" tunneling, and the collision interaction between atoms represent
the "capacitive" couplings between the modes. The qubit states are collective
states of the atoms with opposite persistent currents. This system is closely
analogous to the superconducting flux qubit. Single qubit quantum logic gates
are performed by modulating the Raman couplings, while two-qubit gates result
from a tunnel coupling between neighboring wells. Readout is achieved by tuning
the Raman coupling adiabatically between the Josephson regime to the Rabi
regime, followed by a detection of atoms in internal electronic states.
Decoherence mechanisms are studied in detail promising a high ratio between the
decoherence time and the gate operation time.Comment: 7 figure
Elevated plasma TGF-β1 levels in patients with chronic obstructive pulmonary disease
SummaryBackgroundTransforming growth factor-β1 (TGF-β1), a multifunctional cytokine, has been implicated to be responsible for the increased deposition of extracellular matrix in the airways, and increased submucosal collagen expression in chronic obstructive pulmonary disease (COPD). We determined plasma TGF-β1 levels in patients with COPD and explored its association with common functional polymorphisms of TGF-β1 gene at C-509T and T869C in the development of COPD in a case–control study.MethodsStable COPD patients who were ever smokers, and age and pack-years smoked matched healthy controls (n = 205 in each group) were recruited for measurement of plasma TGF-β1 levels using commercially available ELISA kit, and genotyped at C-509T and T869C functional polymorphisms of TGF-β1 gene using polymerase chain reaction and restriction fragment length polymorphism (PCR–RFLP).ResultsCOPD patients had significantly elevated plasma TGF-β1 levels in comparison to healthy controls irrespective of the genotypes. Allele frequencies and genotype distributions at both polymorphic sites were not different among COPD patients or controls. TGF-β1 levels were inversely correlated (Pearson's correlation analysis) with FEV1 (% predicted) (p < 0.001) and FVC (% predicted) (p < 0.001).ConclusionThe findings of elevated plasma TGF-β1 levels in patients with COPD suggest that TGF-β1 may play a role in COPD pathogenesis. The C-509T and T869C functional polymorphisms of TGF-β1 gene do not represent a genetic predisposition to COPD susceptibility in Hong Kong Chinese patients
Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas
Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation with Fas ligand (FasL) induces S-glutathionylation of Fas at cysteine 294 independently of nicotinamide adenine dinucleotide phosphate reduced oxidase–induced ROS. Instead, Fas is S-glutathionylated after caspase-dependent degradation of Grx1, increasing subsequent caspase activation and apoptosis. Conversely, overexpression of Grx1 attenuates S-glutathionylation of Fas and partially protects against FasL-induced apoptosis. Redox-mediated Fas modification promotes its aggregation and recruitment into lipid rafts and enhances binding of FasL. As a result, death-inducing signaling complex formation is also increased, and subsequent activation of caspase-8 and -3 is augmented. These results define a novel redox-based mechanism to propagate Fas-dependent apoptosis
- …