15 research outputs found

    Advances in fluorescence diagnosis to track footprints of cancer progression in vivo

    No full text
    10.1002/lpor.201200059Laser and Photonics Reviews75646-66

    Advances in optoacoustic imaging: From benchside to clinic.

    No full text
    Optoacoustic imaging has been widely used for in vivo disease diagnosis and therapy monitoring. Acquisition hardware, analysis, and contrast agents have been subject to much innovation, creating access to an ever-growing range of biomedical applications. In this review, a broad overview of optoacoustic theory, instrumentation and data processing is provided, together with the various categories of contrast agents that have been developed. In addition, the application of these techniques and contrast agents in preclinical and clinical imaging applications will be discussed in detail, ranging from imaging of cancer and various organs like skin, brain and breast to sentinel lymph node mapping. Finally under conclusions, we highlighted future perspectives in this field, in the context of instrumentation and software development, as well as advances in clinical translation

    Noninvasive real-time characterization of non-melanoma skin cancers with handheld optoacoustic probes.

    No full text
    Currently, imaging technologies that enable dermsurgeons to visualize non-melanoma skin cancers (NMSC) in vivo preoperatively are lacking, resulting in excessive or incomplete removal. Multispectral optoacoustic tomography (MSOT) is a volumetric imaging tool to differentiate tissue chromophores and exogenous contrast agents, based on differences in their spectral signatures and used for high-resolution imaging of functional and molecular contrast at centimeter scale depth. We performed MSOT imaging with two- and three-dimensional handheld scanners on 21 Asian patients with NMSC. The tumors and their oxygenation parameters could be distinguished from normal skin endogenously. The lesion dimensions and depths were extracted from the spectral melanin component with three-dimensional spatial resolution up to 80 μm. The intraclass correlation coefficient correlating tumor dimension measurements between MSOT and ex vivo histology of excised tumors, showed good correlation. Real-time 3D imaging was found to provide information on lesion morphology and its underlying neovasculature, indicators of the tumor's aggressiveness

    Noninvasive anatomical and functional imaging of orthotopic glioblastoma development and therapy using multispectral optoacoustic tomography.

    No full text
    PURPOSE: Here we demonstrate the potential of multispectral optoacoustic tomography (MSOT), a new non-invasive structural and functional imaging modality, to track the growth and changes in blood oxygen saturation (sO) in orthotopic glioblastoma (GBMs) and the surrounding brain tissues upon administration of a vascular disruptive agent (VDA). METHODS: Nude mice injected with U87MG tumor cells were longitudinally monitored for the development of orthotopic GBMs up to 15 days and observed for changes in sO upon administration of combretastatin A4 phosphate (CA4P, 30 mg/kg), an FDA approved VDA for treating solid tumors. We employed a newly-developed non-negative constrained approach for combined MSOT image reconstruction and unmixing in order to quantitatively map sO in whole mouse brains. RESULTS: Upon longitudinal monitoring, tumors could be detected in mouse brains using single-wavelength data as early as 6 days post tumor cell inoculation. Fifteen days post-inoculation, tumors had higher sO of 63 ± 11% (n = 5, P < .05) against 48 ± 7% in the corresponding contralateral brain, indicating their hyperoxic status. In a different set of animals, 42 days post-inoculation, tumors had lower sO of 42 ± 5% against 49 ± 4% (n = 3, P < .05) in the contralateral side, indicating their hypoxic status. Upon CA4P administration, sO in 15 days post-inoculation tumors dropped from 61 ± 9% to 36 ± 1% (n = 4, P < .01) within one hour, then reverted to pre CA4P treatment values (63 ± 6%) and remained constant until the last observation time point of 6 hours. CONCLUSION: With the help of advanced post processing algorithms, MSOT was capable of monitoring the tumor growth and assessing hemodynamic changes upon administration of VDAs in orthotopic GBMs
    corecore