115 research outputs found

    Rapid: Early classification of explosive transients using deep learning

    Get PDF
    We present RAPID (Real-time Automated Photometric IDentification), a novel time-series classification tool capable of automatically identifying transients from within a day of the initial alert, to the full lifetime of a light curve. Using a deep recurrent neural network with Gated Recurrent Units (GRUs), we present the first method specifically designed to provide early classifications of astronomical time-series data, typing 12 different transient classes. Our classifier can process light curves with any phase coverage, and it does not rely on deriving computationally expensive features from the data, making RAPID well-suited for processing the millions of alerts that ongoing and upcoming wide-field surveys such as the Zwicky Transient Facility (ZTF), and the Large Synoptic Survey Telescope (LSST) will produce. The classification accuracy improves over the lifetime of the transient as more photometric data becomes available, and across the 12 transient classes, we obtain an average area under the receiver operating characteristic curve of 0.95 and 0.98 at early and late epochs, respectively. We demonstrate RAPID's ability to effectively provide early classifications of transients from the ZTF data stream. We have made RAPID available as an open-source software package (this https URL) for machine learning-based alert-brokers to use for the autonomous and quick classification of several thousand light curves within a few seconds

    Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. I. Evidence for Thermal Energy Anisotropy Using Oriented Stacking

    Get PDF
    The cosmic web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along intercluster bridges, visible through their thermal Sunyaev-Zel'dovich signal in the cosmic microwave background. We demonstrate a new, flexible method to analyze the hot gas signal from multiscale extended structures. We use a Compton y-map from the Atacama Cosmology Telescope (ACT) stacked on redMaPPer cluster positions from the optical Dark Energy Survey (DES). Cutout images from the y-map are oriented with large-scale structure information from DES galaxy data such that the superclustering signal is aligned before being overlaid. We find evidence of an extended quadrupole moment of the stacked y signal at the 3.5σ level, demonstrating that the large-scale thermal energy surrounding galaxy clusters is anisotropically distributed. We compare our ACT × DES results with the Buzzard simulations, finding broad agreement. Using simulations, we highlight the promise of this novel technique for constraining the evolution of anisotropic, non-Gaussian structure using future combinations of microwave and optical surveys. © 2022. The Author(s). Published by the American Astronomical Society

    CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor

    Full text link
    We present the detailed science case, and brief descriptions of the telescope design, site, and first light instrument plans for a new ultra-wide field submillimeter observatory, CCAT-prime, that we are constructing at a 5600 m elevation site on Cerro Chajnantor in northern Chile. Our science goals are to study star and galaxy formation from the epoch of reionization to the present, investigate the growth of structure in the Universe, improve the precision of B-mode CMB measurements, and investigate the interstellar medium and star formation in the Galaxy and nearby galaxies through spectroscopic, polarimetric, and broadband surveys at wavelengths from 200 um to 2 mm. These goals are realized with our two first light instruments, a large field-of-view (FoV) bolometer-based imager called Prime-Cam (that has both camera and an imaging spectrometer modules), and a multi-beam submillimeter heterodyne spectrometer, CHAI. CCAT-prime will have very high surface accuracy and very low system emissivity, so that combined with its wide FoV at the unsurpassed CCAT site our telescope/instrumentation combination is ideally suited to pursue this science. The CCAT-prime telescope is being designed and built by Vertex Antennentechnik GmbH. We expect to achieve first light in the spring of 2021.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, June 14th, 201

    Precision Epoch of Reionization studies with next-generation CMB experiments

    Get PDF
    Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near =1500\ell=1500 in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range 300<<3000300<\ell<3000 with simulated temperature data from the full Planck mission in the low and intermediate \ell region, 2<<20002<\ell<2000. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than 1%1\% accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a 15σ15 \sigma detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at >1500\ell>1500, leading to a measurement of the amplitude of matter density fluctuations, σ8\sigma_8, at 1%1\% precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with σ(zre)=1.1\sigma(z_{\rm re})=1.1 and σ(Δzre)=0.2\sigma(\Delta z_{\rm re})=0.2. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.Comment: 10 pages, 10 figure

    The Photometric LSST Astronomical Time-series Classification Challenge PLAsTiCC: Selection of a Performance Metric for Classification Probabilities Balancing Diverse Science Goals

    Get PDF
    Classification of transient and variable light curves is an essential step in using astronomical observations to develop an understanding of the underlying physical processes from which they arise. However, upcoming deep photometric surveys, including the Large Synoptic Survey Telescope (LSST), will produce a deluge of low signal-to-noise data for which traditional type estimation procedures are inappropriate. Probabilistic classification is more appropriate for such data but is incompatible with the traditional metrics used on deterministic classifications. Furthermore, large survey collaborations like LSST intend to use the resulting classification probabilities for diverse science objectives, indicating a need for a metric that balances a variety of goals. We describe the process used to develop an optimal performance metric for an open classification challenge that seeks to identify probabilistic classifiers that can serve many scientific interests. The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC) aims to identify promising techniques for obtaining classification probabilities of transient and variable objects by engaging a broader community beyond astronomy. Using mock classification probability submissions emulating realistically complex archetypes of those anticipated of PLAsTiCC, we compare the sensitivity of two metrics of classification probabilities under various weighting schemes, finding that both yield results that are qualitatively consistent with intuitive notions of classification performance. We thus choose as a metric for PLAsTiCC a weighted modification of the cross-entropy because it can be meaningfully interpreted in terms of information content. Finally, we propose extensions of our methodology to ever more complex challenge goals and suggest some guiding principles for approaching the choice of a metric of probabilistic data products

    Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    Get PDF
    We present a new measurement of the kinematic Sunyaev-Zeldovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zeldovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.Comment: 15 pages, 8 figures, 2 table

    Models and simulations for the photometric lsst astronomical time series classification challenge (Plasticc)

    Get PDF
    We describe the simulated data sample for the "Photometric LSST Astronomical Time Series Classification Challenge" (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the Large Synoptic Survey Telescope (LSST), a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to 2018 December 17, and included 1,094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at this https URL. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of type Ia supernova used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models

    The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data

    Get PDF
    We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56, in agreement with the canonical value of Neff=3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, dns/dlnk = -0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013) and Dunkley et al. (2013). Matches published JCAP versio

    Results of the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)

    Get PDF
    Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set

    Behavioral and Pharmacokinetic Profile of Indole-Derived Synthetic Cannabinoids JWH-073 and JWH-210 as Compared to the Phytocannabinoid Δ9-THC in Rats

    Get PDF
    Synthetic cannabinoid compounds are marketed as “legal” marijuana substitutes, even though little is known about their behavioral effects in relation to their pharmacokinetic profiles. Therefore, in the present study we assessed the behavioral effects of systemic treatment with the two synthetic cannabinoids JWH-073 and JWH-210 and the phytocannabinoid Δ9-THC on locomotor activity, anxiety-like phenotype (in the open field) and sensorimotor gating (measured as prepulse inhibition of the acoustic startle response, PPI), in relation to cannabinoid serum levels. Wistar rats were injected subcutaneously (sc.) with JWH-073 (0.1, 0.5, or 5 mg/kg), JWH-210 (0.1, 0.5, or 5 mg/kg), Δ9-THC (1 or 3 mg/kg) or vehicle (oleum helanti) in a volume of 0.5 ml/kg and tested in the open field and PPI. Although JWH-073, JWH-210, Δ9-THC (and its metabolites) were confirmed in serum, effects on sensorimotor gating were absent, and locomotor activity was only partially affected. Δ9-THC (3 mg/kg) elicited an anxiolytic-like effect as suggested by the increased time spent in the center of the open field (p &lt; 0.05). Our results further support the potential anxiolytic-like effect of pharmacological modulation of the endocannabinoid system
    corecore