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ABSTRACT

We present RAPID (Real-time Automated Photometric IDentification), a novel time-series classifi-
cation tool capable of automatically identifying transients from within a day of the initial alert, to
the full lifetime of a light curve. Using a deep recurrent neural network with Gated Recurrent Units
(GRUs), we present the first method specifically designed to provide early classifications of astronom-
ical time-series data, typing 12 different transient classes. Our classifier can process light curves with
any phase coverage, and it does not rely on deriving computationally expensive features from the data,
making RAPID well-suited for processing the millions of alerts that ongoing and upcoming wide-field
surveys such as the Zwicky Transient Facility (ZTF), and the Large Synoptic Survey Telescope (LSST)
will produce. The classification accuracy improves over the lifetime of the transient as more photo-
metric data becomes available, and across the 12 transient classes, we obtain an average area under
the receiver operating characteristic curve of 0.95 and 0.98 at early and late epochs, respectively. We
demonstrate RAPID’s ability to effectively provide early classifications of transients from the ZTF data
stream. We have made RAPID available as an open-source software package® for machine learning-
based alert-brokers to use for the autonomous and quick classification of several thousand light curves
within a few seconds.

Keywords: methods: data analysis, techniques: photometric, virtual observatory tools, supernovae:

general

1. INTRODUCTION

Observations of the transient universe have led to
some of the most significant discoveries in astronomy
and cosmology. From the use of Cepheids and type Ia
supernovae (SNe Ia) as standardizable candles for esti-
mating cosmological distances, to the recent detection
of a kilonova event as the electromagnetic counterpart
of GW170817, the transient sky continues to provide
exciting new astronomical discoveries.

In the past, transient science has had significant
successes using visual classification by experienced as-
tronomers to rank interesting new events and prioritize
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spectroscopic follow-up. Nevertheless, the visual classifi-
cation process inevitably introduces latency into follow-
up studies, and spectra for many objects are obtained
several days to weeks after the initial detection. Existing
and upcoming wide-field surveys and facilities will pro-
duce several million transient alerts per night, e.g. the
Large Synoptic Survey Telescope (LSST, Ivezié et al.
2008), the Dark Energy Survey (Dark Energy Survey
Collaboration et al. 2016, DES, ), the Zwicky Transient
Facility (ZTF, Bellm 2014), the Catalina Real-Time
Transient Survey (CRTS, Djorgovski et al. 2011), the
Panoramic Survey Telescope and Rapid Response Sys-
tem (PanSTARRS, Chambers & Pan-STARRS Team
2017), the Asteroid Terrestrial-impact Last Alert Sys-
tem (ATLAS, Tonry et al. 2018), and the Planet Search
Survey Telescope (PSST, Dunham et al. 2004). This
unprecedented number means that it will be possible
to obtain early-time observations of a large sample of
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transients, which in turn will enable detailed studies of
their progenitor systems and a deeper understanding of
their explosion physics. However, with this deluge of
data comes new challenges, and individual visual classi-
fication for spectroscopic follow-up is utterly unfeasible.

Developing methods to automate the classification of
photometric data is of particular importance to the tran-
sient community. In the case of SNe Ia, cosmological
analyses to measure the equation of state of the dark
energy w and its evolution requires large samples with
low contamination. The need for a high purity sample
necessitates expensive spectroscopic observations to de-
termine the type of each candidate, as classifying SNe
Ia based on sparse light curves' runs the risk of con-
tamination with other transients, particularly type Ibc
supernovae. Even with human inspection, the differing
cadence, observer frame passbands, photometric proper-
ties, and contextual information of each transient light
curve constitute a complex mixture of sparse informa-
tion, which can confound our visual sense, leading to
potentially inconsistent classifications. This failing of
visual classification, coupled with the large volumes of
data, necessitates a streamlined automated classification
process. This is our motivation for the development
of our deep neural network (DNN) for Real-time Au-
tomated Photometric IDentification (RAPID), the focus
of this work.

1.1. Previous Work on Automated Photometric
Classification

In 2010, the Supernova Photometric Classification
Challenge (SNPhotCC, Kessler et al. 2010a,b), in prepa-
ration for the Dark Energy Survey (DES), spurred the
development of several innovative classification tech-
niques. The goal of the challenge was to determine
which techniques could distinguish SNe Ia from several
other classes of supernovae using light curves simulated
with the properties of the DES. The techniques used for
classification varied widely, from fitting light curves with
a variety of templates (Sako et al. 2008), to much more
complex methodologies that use semi-supervised learn-
ing approaches (Richards et al. 2012) or parametric fit-
ting of light curves (Karpenka et al. 2013). A measure
of the value of the SNPhotCC is that the dataset is still
used as the reference standard to benchmark contempo-
rary supernova light curve classification schemes, such as
Bloom et al. (2012); Richards et al. (2012); Ishida & de

1 We define light curves as photometric time-series measure-
ments of a transient in multiple passbands. Full light curves refer
to time series of objects observed over nearly their full transient
phase. We refer to early light curves as time series observed up to
2 days after a trigger alert, defined in §2.2.

Souza (2013); Charnock & Moss (2017); Lochner et al.
(2016); Revsbech et al. (2018); Narayan et al. (2018);
Pasquet et al. (2019).

Nearly all approaches to automated classification de-
veloped using the SNPhotCC dataset have either used
empirical template-fitting methods (Sako et al. 2008,
2011) or have extracted features from supernova light
curves as inputs to machine learning classification al-
gorithms (Newling et al. 2011; Karpenka et al. 2013;
Lochner et al. 2016; Narayan et al. 2018; Mdéller et al.
2016; Sooknunan et al. 2018). Lochner et al. (2016) used
a feature-based approach, computing features using ei-
ther parametric fits to the light curve, template fitting
with SALT2 (Guy et al. 2007), or model-independent
wavelet decomposition of the data. These features were
independently fed into a range of machine learning ar-
chitectures including Naive Bayes, k-nearest neighbours,
multilayer perceptrons, support vector machines, and
boosted decision trees (see Lochner et al. 2016 for a
brief description of these) and were used to classify just
three broad supernova types. The work concluded that
the non-parametric feature extraction approaches were
most effective for all classifiers, and that boosted deci-
sion trees performed most effectively. Surprisingly, they
further showed that the classifiers did not improve with
the addition of redshift information. These previous ap-
proaches share two characteristics:

1. they are largely tuned to discriminate between dif-
ferent classes of supernovae,

2. they require the full phase coverage of each light
curve for classification.

Both characteristics arise from the SNPhotCC dataset.
As it was developed to test photometric classification
for an experiment using SNe Ia as cosmological probes,
the training set represented only a few types of non-
SNe Ia that were likely contaminants, whereas the tran-
sient sky is a menagerie. Additionally, SNPhotCC pre-
sented astronomers with full light curves, rather than
the streaming data that is generated by real-time tran-
sient searches, such as ZTF. While previous methods
can be extended with a larger, more diverse training
set, the second characteristic they share is a more se-
vere limitation. Requiring complete phase coverage of
each light curve for classification (e.g. Lochner et al.
2016) is a fundamental design choice when developing
the architecture for automated photometric classifica-
tion, and methods cannot trivially be re-engineered to
work with sparse data.
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1.2. Early Classification

While retrospective classification after the full light
curve of an event has been observed is useful, it also lim-
its the scientific questions that can be answered about
these events, many of which exhibit interesting physics
at early-times. Detailed observations, including high-
cadence photometry, time-resolved spectroscopy, and
spectropolarimetry, shortly after the explosion provides
insights into the progenitor systems that power the event
and hence improves our understanding of the objects’
physical mechanism. Therefore, ensuring a short latency
between a transient detection and its follow-up is an im-
portant scientific challenge. Thus, a key goal of our work
on RAPID has been to develop a classifier capable of iden-
tifying transient types within 2 days of detection. We
refer to photometric typing with observations obtained
in this narrow time-range as early classification.

The discovery of the electromagnetic counterpart (Ab-
bott et al. 2017a; Coulter et al. 2017; Arcavi et al. 2017;
Soares-Santos et al. 2017) from the binary neutron star
merger event, GW170817, has thrown the need for auto-
mated photometric classifiers capable of identifying ex-
otic events from sparse data into sharp relief. As we
enter the era of multi-messenger astrophysics, it will be-
come evermore important to decrease the latency be-
tween the detection and follow-up of transients. While
the massive effort to optically follow up GW170817 was
heroic, it involved a disarray of resource coordination.
With the large volumes of interesting and unique data
expected by surveys such as LSST (~ 107 alerts per
night), the need to streamline follow-up processes is
crucial. The automated early classification scheme de-
veloped in this work alongside the new transient bro-
kers® such as ALeRCE?, LASAIR? (Smith et al. 2019),
ANTARES® (Saha et al. 2014, 2016) are necessary to
ensure organized and streamlined follow-up of the high
density of exciting transients in upcoming surveys.

There have been a few notable efforts at early-time
photometric classification, particularly using additional
contextual data. Sullivan et al. (2006) successfully dis-
criminated between SNe Ia and core-collapse SNe in the
Supernova Legacy Survey using a template fitting tech-
nique on only two to three epochs of multiband pho-
tometry. Poznanski et al. (2007) similarly attempted to

2 Transient brokers are automated software systems that man-
age the real-time alert streams from transient surveys such as ZTF
and LSST. They sift through, characterize, annotate and prioritise
events for follow-up.

3 http://alerce.science

4 https://lasair.roe.ac.uk

5 https://antares.noao.edu/

distinguish between SNe Ia and core-collapse SNe using
only single-epoch photometry along with a photometric
redshift estimate from the probable host-galaxy. A few
contemporary techniques such as Foley & Mandel (2013)
and the sherlock package® use only host galaxy and
contextual information with limited accuracy to predict
transient classes (e.g. the metallicity of the host galaxy
is correlated with supernova type).

The most widely used scheme for classification is
pSNid (Sako et al. 2008, 2011). It has been used by
the Sloan Digital Sky Survey and DES (D’Andrea et al.
2018) to classify pre-maximum and full light curves into
3 supernova types (SNIa, SNII, SNIbc). For each class,
it has a library of template light curves generated over
a grid of parameters (redshift, dust extinction, time of
maximum, and light curve shape). To classify a tran-
sient, it performs an exhaustive search over the tem-
plates of all classes. It identifies the class of the tem-
plate that best matches (with minimum x?) the data and
computes the Bayesian evidence by marginalizing the
likelihood over the parameter space. The latest version
employs computationally-expensive nested sampling to
compute the evidence. Therefore, the main computa-
tional burden (which increases with the number of tem-
plates used) is incurred every time it used to predict the
class of each new transient. As new data arrives, this
cost is multiplied as the procedure must be repeated
each time the classifications are updated.

In contrast, RAPID covers a much broader variety of
transient classes and learns a function that directly maps
the observed photometric time series onto these tran-
sient class probabilities. The main computational cost
is incurred only once, during the training of the DNN;
while predictions obtained by running new photometric
time series through the trained network are very fast.
Because of this advantage, updating the class proba-
bilities as new data arrives is trivial. Furthermore, we
specifically designed our RNN architecture for temporal
processes. In principle, it is able to save the informa-
tion from previous nights so that the additional cost to
update the classifications as new data are observed is
only incremental. These aspects make RAPID particu-
larly well-suited to the large volume of transients that
new surveys such as LSST will observe.

1.3. Deep Learning in Time-Domain Astronomy

Improving on previous feature-based classification
schemes, and developing methods that exhibit good per-
formance even with sparse data, requires new machine
learning architectures. Advanced neural network ar-

6 https://github.com/thespacedoctor/sherlock
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chitectures are non-feature-based approaches that have
recently been shown to have several benefits such as low
computational cost, and being robust against some of
the biases that can afflict machine learning techniques
that require “expert-designed” features (Aguirre et al.
2018; Charnock & Moss 2017; Moss 2018; Naul et al.
2018). The use of Artificial Neural Networks (ANN,
McCulloch & Pitts 1943) and deep learning, in partic-
ular, has seen dramatic success in image classification,
speech recognition, and computer vision, outperform-
ing previous approaches in many benchmark challenges
(Krizhevsky et al. 2012; Razavian et al. 2014; Szegedy
et al. 2015).

In time-domain astronomy, deep learning has recently
been used in a variety of classification problems includ-
ing variable stars (Naul et al. 2018; Hinners et al. 2018),
supernova spectra (Muthukrishna et al. 2019), photo-
metric supernovae (Charnock & Moss 2017; Moss 2018;
Moller & de Boissiere 2019; Pasquet et al. 2019), and se-
quences of transient images (Carrasco-Davis et al. 2018).
A particular class of ANNs known as Recurrent Neu-
ral Networks (RNNs) are particularly suited to learn-
ing sequential information (e.g. time-series data, speech
recognition, and natural language problems). While
ANNs are often feed-forward (e.g. convolutional neu-
ral networks and multilayer perceptrons), where infor-
mation passes through the layers once, RNNs allow for
cycling of information through the layers. They are able
to encode an internal representation of previous epochs
in time-series data, which along with real-time data, can
be used for classification.

A variant of RNNs known as Long Short Term Mem-
ory Networks (LSTMs, Hochreiter & Schmidhuber
1997) improve upon standard RNNs by being able to
store long-term information, and have achieved state-
of-the-art performance in several time-series applica-
tions. In particular, they revolutionized speech recogni-
tion, outperforming traditional models (Fernédndez et al.
2007; Hannun et al. 2014; Li & Wu 2015) and have very
recently been used in the trigger word detection algo-
rithms popularized by Apple’s Siri, Microsoft’s Cortana,
Google’s voice assistant, and Amazon’s Echo. Naul et al.
(2018) and Hinners et al. (2018) have had excellent suc-
cess in variable star classification. Charnock & Moss
(2017) applied the technique to supernova classification.
They used supernova data from the SNPhotCC and fed
the multiband photometric full lightcurves into their
LSTM architecture to achieve high SNIa vs non-SNIa
binary classification accuracies. Moss (2018) recently
followed this up on the same data with a novel approach
applying a new phased-LSTM (Neil et al. 2016) archi-
tecture. These approaches have the advantage over pre-

vious supernova photometric classifiers of not requiring
computationally-expensive and user-defined (and hence,
possibly biased) feature engineering processes.

While this manuscript was under review, Moller & de
Boissiere (2019) released a similar algorithm for photo-
metric classification of a range of supernova types. It
uses a recurrent neural network architecture based on
BRNNs (Bayesian Recurrent Neural Networks) and does
not require any feature extraction. At a similar time,
Pasquet et al. (2019) released a package for full light
curve photometric classification based on Convolutional
Neural Networks, again able to use photometric light
curves without requiring feature engineering processes.
These approaches made use of datasets adapted from the
SNPhotCC, using light-curves based on the observing
properties of the Dark Energy Survey and with a smaller
variety of transient classes than the PLAsTiCC-based
training set used in our work. Pasquet et al. (2019) use
a framework that is very effective for full light curve
classification, but is not well suited to early or partial
light curve classification. Moller & de Boissiere (2019),
on the other hand, is one of the first approaches able
to classify partial supernova light curves using a single
bi-directional RNN layer, and achieve accuracies of up
t0 96.92 4+ 0.26% for a binary SNIa vs non-SNIa classi-
fier. While their approach is similar, the type of RNN,
neural network architecture, dataset, and focus on su-
pernovae differs from the work presented in this paper.
RAPID is focused on early and real-time light curve clas-
sification of a wide range of transient classes to identify
interesting objects early, rather than on full light curve
classification for creating pure photometric sample for
SNIa cosmology. We are currently applying our work to
the real-time alert stream from the ongoing ZTF survey
through the ANTARES broker, and plan to develop the
technique further for use on the LSST alert stream.

1.4. Overview

In this paper, we build upon the approach used in
Charnock & Moss (2017). We develop RAPID using
a deep neural network (DNN) architecture that em-
ploys a very recently improved RNN variation known as
Gated Recurrent Units (GRUs, Cho et al. 2014). This
novel architecture allows us to provide real-time,
rather than only full light curve, classifications.

Previous RNN approaches (including Charnock &
Moss (2017); Moss (2018); Hinners et al. (2018); Naul
et al. (2018); Moller & de Boissiere (2019)) all make use
of bi-directional RNNs that can access input data from
both past and future frames relative to the time at which
the classification is desired. While this is effective for full
light curve classification, it does not suit the real-time,
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Figure 1. Schematic illustrating the preprocessing, training set preparation, and classification processes described throughout

this paper.

time-varying classification that we focus on in this work.
In real-time classification, we can only access input data
previous to the classification time. Therefore, to re-
spect causality, we make use of uni-directional RNNs
that only take inputs from time-steps previous to at any
given classification time. RAPID also enables multi-class
and multi-passband classifications of transients as well
as a new and independent measure of transient explo-
sion dates. We further make use of a new light curve
simulation software developed by the recent Photomet-
ric LSST Astronomical Time-series Classification Chal-
lenge (PLAsTICC, The PLASTICC team et al. 2018).

In section 2 we discuss how we use the PLASTiICC
models with the SNANA software suite (Kessler et al.
2009) to simulate photometric light curves based on the
observing characteristics of the ZTF survey, and de-
scribe the resulting dataset along with our cuts, pro-
cessing, and modelling methods. In section 3, we frame
the problem we aim to solve and detail the deep learn-
ing architecture used for RAPID. In section 4, we evaluate
our classifier’s performance with a range of metrics, and
in section 5 we apply the classifier to observed data from
the live ZTF data stream. An illustration of the differ-
ent sections of this paper and their connections is shown
in Fig. 1. Finally, in section 6, we compare RAPID to
a feature-based classification technique we implemented
using an advanced Random Forest classifier improved
from Narayan et al. (2018) and based on Lochner et al.
(2016). We present conclusions in section 6.

2. DATA
2.1. Simulations

One of the key challenges with developing classifiers
for upcoming transient surveys is the lack of labelled
samples that are appropriate for training. Moreover,
even once a survey commences, it can take a significant
amount of time to accumulate a well-labelled sample
that is large enough to develop robust learning algo-

rithms. To meet this difficulty for LSST, the PLAsTiCC
collaboration has developed the infrastructure to simu-
late light curves of astrophysical sources with realistic
sampling and noise properties. This effort was one com-
ponent of an open-access challenge to develop algorithms
that classify astronomical transients. By adapting su-
pernova analysis tools such as SNANA (Kessler et al.
2009) to process several models of astrophysical phe-
nomena from leading experts, a range of new transient
behavior included in the PLASTiCC dataset. The chal-
lenge has recently been released to the public on Kaggle”
(The PLASTICC team et al. 2018) along with the met-
ric framework to evaluate submissions to the challenge
(Malz et al. 2018). The PLAsTiCC models are the most
comprehensive enumeration of the transient and variable
sky available at present.

We use the PLAsTiCC transient class models and the
simulation code developed in Kessler et al. (2019) to
create a simulated dataset that is representative of the
cadence and observing properties of the ongoing public
“Mid Scale Innovations Program” (MSIP) survey at the
ZTF (Bellm 2014). This allows us to compare the va-
lidity of the simulations with the live ZTF data stream,
and apply our classifier to it as illustrated in section 5.

2.1.1. Zwicky Transient Facility

ZTF is the first of the new generation of optical syn-
optic survey telescopes and builds upon the infrastruc-
ture of the Palomar Transient Factory (PTF, Rau et al.
2009). It employs a 47 square degree field-of-view cam-
era to scan more than 3750 square degrees an hour to
a depth of 20.5 - 21 mag (Graham & Zwicky Transient
Facility (ZTF) Project Team 2018). It is a precursor
to the LSST and will be the first survey to produce
one million alerts a night and to have a trillion row data
archive. To prepare for this unprecedented data volume,

7 https://www.kaggle.com
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we build an automated classifier trained on a large sim-
ulated ZTF-like dataset that contains a labelled sample
of transients.

We obtained logs of ZTF observing conditions (E.
Bellm, private communication) and photometric prop-
erties (zeropoints, FWHM, sky brightness etc.), and one
of us (R.B.) converted these into a library suitable for
use with SNANA. SNANA simulates millions of light
curves for each model, following a class-specific luminos-
ity function prescription within the ZTF footprint. The
sampling and noise properties of each observation on
each light curve is set to reflect a random sequence from
within the observing conditions library. The simulated
light curves thus mimic the ZTF observing properties
with a median cadence of 3 days in the g and r pass-
bands. As ZTF had only been operating for four months
when we constructed the observing conditions library, it
is likely that our simulations are not fully representative
of the survey. Nevertheless, this procedure is more real-
istic than simulating the observing conditions entirely,
as we would have been forced to do if we had developed
RAPID for LSST or WFIRST. We verified that the sim-
ulated light curves have similar properties to observed
transient sources detected by ZTF that have been an-
nounced publicly. The dataset consists of a labelled set
of 48029 simulated transients evenly distributed across
a range of different classes briefly described below. An
example of a simulated light curve from each class is
shown in Fig. 2.

2.1.2. Transient Classes

We briefly describe the transient class models from
Kessler et al. 2019 that are used throughout this paper.

Type Ia Supernovae: Type Ia supernovae are the
thermonuclear explosion of a binary star system
consisting of a carbon-oxygen white dwarf accret-
ing matter from a companion star. In recent years,
many subgroups in the SNIa class have been de-
fined to account for their observed diversity. In
this work we include three subtypes. SNIa-norm
are the most commonly observed SNIa class. Type
Ta-91bg Supernovae (SNIa-91bg) burn at slightly
lower luminosities and have lower eject velocities.
SNIax are similar, and are SN2002cx-like super-
novae (defined in Silverman et al. 2012; Foley
et al. 2013).

Core collapse Supernovae: Type Ibc (SNIbc) and
Type II (SNII) supernovae are typically found in
regions of star formation, and are the result of
the core collapse of massive stars. Their light
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Figure 2. The light curves of one example transient from
each of the 12 transient classes is plotted with an offset. We
have only plotted transients with a high signal-to-noise and
with a low simulated host redshift (z < 0.2) to facilitate
comparison of light curve shape between the classes. The
dark-coloured square markers plots the r» band light curves
of each transient, while the lighter-coloured circle markers
are the g band light curves of each transient.
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curve shape and spectra near maximum light look
very similar to SNIa, but tend to have magnitudes
about 1.0-1.5 times fainter than a typical SNIa.

point-TIa: These are a hypothetical supernova type

which are expected to have light curve shapes very
similar to normal SNe Ia, but are just one-tenth
as bright. They are the result of the early onset
of detonation of helium transferring white dwarf
binaries known as AM Canum Venacticorum sys-
tems (Shen et al. 2010). Helium that accretes onto
carbon-oxygen white dwarfs undergoes unstable
thermonuclear flashes when the orbital period is
short: in the 2.5-3.5 minute range (Bildsten et al.
2007). This process is strong enough to result in
the onset of a detonation.

TDE: Tidal Disruption Events occur when a star in the

orbit of a massive black hole is pulled apart by the
black hole’s tidal forces. Some debris from the
event is ejected at high speeds, while the remain-
der is swallowed by the black hole, resulting in a
bright flare lasting up to a few years (Rees 1988).

Kilonovae: Kilonovae have been observed as the elec-

tromagnetic counterparts of gravitational waves.
They are the mergers of either double neutron
stars (NS-NS) or black hole neutron star (BH-
NS) binaries, the former of which was recently
discovered by LIGO (see the famous GW170817
Abbott et al. 2017a,b). The neutron-rich ejecta
from the merger undergoes rapid neutron capture
(r-process) nucleosynthesis to produce the Uni-
verse’s rare heavy elements. The radioactive decay
of these unstable nuclei power a rapidly evolving
transient kilonova event (Metzger 2017; Yu et al.
2018).

SLSN-I: Type I Super-luminous supernovae (SLSN)

have ~ 10 times the energy of SNe Ia and core-
collapse SNe, and are thought to be caused by
several different progenitor mechanisms including
magnetars, the core-collapse of particularly mas-
sive stars, and interaction with circum-stellar ma-
terial. In analogy to supernovae, they are di-
vided into hydrogen-poor (type I) and hydrogen-
rich (type II). A subclass of SLSN-I appear to be
powered by radioactive decay of Ni-56, and are
termed SLSN-R. However, the majority of SLSN-
I require some other energy source, as the nickel
mass required to power their peaks is in conflict
with their late-time decay. While SLSN-I and
SLSN-II have different spectroscopic fingerprints,
their light curves are qualitatively similar, and

for classification purposes, it suffices to consider
SLSN-I as a proxy for classification performance
on all SLSN. See SN2005ap in Quimby et al. (2007)
for an example and Gal-Yam (2018) for a compre-
hensive review.

PISN: Pair-instability Supernovae are thought to be
runaway thermonuclear explosions of massive stars
with oxygen cores initiated when the internal en-
ergy in the core is sufficiently high to initiate pair
production. This pair-production from ~ rays in
turn leads to a dramatic drop in pressure support,
and partial collapse. The rapid contraction leads
to accelerated oxygen ignition, followed by explo-
sion. These explosive transients can only result
from stars with masses ~ 10 Mg and above, and
they naturally yield several solar masses of Ni-56.
Ren et al. (2012) and Gal-Yam (2012) has sug-
gested that observed members of the SLSN-R sub-
class are consistent with PISN models.

ILOT: Intermediate Luminosity Transients have a peak
luminosity in the energy gap between novae and
supernovae (e.g. NGC 300 OT2008-1, Berger et al.
2009). The physical mechanism of these objects is
not well understood, but they have been modelled
as either the eruption of red giants or as interact-
ing binary systems (see Kashi & Soker 2017 and
references therein).

CART: Calcium-rich gap transients (e.g. PTF11lkmb,
Lunnan et al. 2017) are a recently discovered tran-
sient class that have strong forbidden and permit-
ted calcium lines in their spectra. The physical
mechanism of these events is not well understood,
but they are known to evolve much faster than
average SNe Ia with rise times less than 15 days
(compared with ~ 18 days for SNIa), have veloc-
ities of approximately 6000 to 10000 km s~!, and
have absolute magnitudes in the range -15.5 to -
16.5 (a factor of 10 to 30 times fainter than SNe
Ia) (Sell et al. 2015; Kasliwal et al. 2012).

The above list of transients is not exhaustive, but is
the largest collection of transient models assembled to
date. The specific models used in the simulations de-
rived from Kessler et al. (2019) are SNIa-norm: Guy
et al. (2010); Kessler et al. (2013); Pierel et al. (2018),
SNIbc: Kessler et al. (2010b); Pierel et al. (2018); Guil-
lochon et al. (2018); Villar et al. (2017), SNII: Kessler
et al. (2010b); Pierel et al. (2018); Guillochon et al.
(2018); Villar et al. (2017), SNIa-91bg: (Galbany et
al. in prep.), SNIa-x: Jha (2017), pointla: Shen et al.
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(2010), Kilonovae: Kasen et al. (2017), SLSN: Guillo-
chon et al. (2018); Nicholl et al. (2017); Kasen & Bild-
sten (2010), PISN: Guillochon et al. (2018); Villar et al.
(2017); Kasen et al. (2011), ILOT: Guillochon et al.
(2018); Villar et al. (2017), CART: Guillochon et al.
(2018); Villar et al. (2017); Kasliwal et al. (2012), TDE:
Guillochon et al. (2018); Mockler et al. (2019); Rees
(1988).

Each simulated transient dataset consists of a time se-
ries of flux and flux error measurements in the g and r
ZTF bands, along with sky position, Milky Way dust
reddening, a host-galaxy redshift, and a photometric
redshift. The models used in PLASTiCC were exten-
sively validated against real observations by several com-
plementary techniques, as described by Narayan et al.
(2019, in prep.). We split the total set of transients into
two parts: 60% for the training set and 40% for the test-
ing set. The training set is used to train the classifier to
identify the correct transient class, while the testing set
is used to test the performance of the classifier.

2.2. Trigger for Issuing Alerts

The primary method used for detecting transient
events is to subtract real-time or archival data from a
new image to detect a change in observed flux. This
is known as difference imaging, and has been shown to
be effective, even in fields that are crowded or associ-
ated with highly non-uniform unresolved surface bright-
ness (Tomaney & Crotts 1996; Bond et al. 2001). Most
transient surveys, including ZTF, use this method, and
‘trigger’ a transient event when there is a detection in a
difference image that exceeds a 50 signal-to-noise (S/N)
threshold. Throughout this work, we use trigger to iden-
tify this time of detection. We refer to early classifica-
tion as classification made within 2 days of this trig-
ger, and full classification as classifications made after
40 days since trigger.

2.3. Selection Criteria

To create a good and clean training sample, we made
a number of cuts before processing the light curves. The
selection criteria is described as follows.

z < 0.5 and z # 0:
Firstly, we cut objects with host-galaxy redshifts
z =0 or z > 0.5 such that all galactic objects and
any higher redshift objects were removed as these
candidates are too faint to be useful for the early-
time progenitor studies that motivated the devel-
opment of this classifier in the first place. While
our work relies on knowing the redshift of each
transient, in this low redshift range, we should be

able to obtain a redshift from the host galaxy from
existing catalogs.

Sufficient data in the early light curve: Next, we
ensured that the selected light curves each had
at least three measurements before trigger, and
at least two of these were in different passbands.
Even if these measurements were themselves in-
sufficient to cause a trigger, they help establish a
baseline flux. This cut therefore removes objects
that triggered immediately after the beginning
of the observing season, as these are likely to be
unacceptably windowed.

b > 15° and b < —15°:
Any object in the galactic plane, with latitude
—15° < b < 15°, was also cut from the dataset
because our analysis only considers extragalactic
transients.

Selected only transient objects:
Finally, while the PLAsTiCC simulations in-
cluded a range of variable objects, including
AGN, RR Lyrae, M-dwarf flares, and Eclipsing
Binary events, we removed these from the simu-
lated dataset. This cut on the dataset was made
because these long-lived variable candidates will
likely be identified to a very high completeness
over the redshift range under consideration, and
will not be misidentified as a class of astrophysical
interest for early-time studies.

2.4. Preprocessing

Arguably one of the most important aspects in an ef-
fective learning algorithm is the quality of the training
set. In this section we discuss efforts to ensure that the
data is processed in a uniform and systematic way before
we train our DNN.

The light curves are measured in flux units, as is ex-
pected for the ZTF difference imaging pipeline. The
simulations have a significant fraction of the observa-
tions being 5-10 sigma outliers. These outliers are in-
tended to replicate the difference image analysis arti-
facts, telescope CCD deficiencies, and cosmic rays seen
in observational data. We perform ‘sigma clipping’ to
reject these outliers. We do this by rejecting photomet-
ric points with flux uncertainties that are more than 3¢
from the mean uncertainty in each passband, and iter-
atively repeat this clipping 5 times. Next, we correct
the light curves for interstellar extinction using the red-
dening function of Fitzpatrick (1999). We assume an
extinction law, Ry = 3.1, and use the central wave-
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length of each ZTF filter to de-redden each light curve
listed as follows®:

g: 4767 A, r: 6215 A.

Following this, we account for cosmological time dila-
tion using the host redshifts, z, and convert the observer
frame time since trigger to a rest-frame time interval,

t= (Tobs - Ttrigger)/(l + Z)7 (1)

where capital T refers to an observer frame time in
MJD and lowercase t refers to a rest-frame time inter-
val relative to trigger. We define trigger as the epoch at
which the ZTF difference imaging detects a 50 threshold
change in flux.

We then calculate the luminosity distance, dp(z), to
each transient using the known host redshift and assum-
ing a ACDM cosmology with Q) = 0.3, Q5 = 0.7 and
Hy = 70. We correct the flux for this distance by multi-
plying each flux by d2 and scaling by some normalizing
factor, norm = 10'®, to keep the flux values in a good
range for floating-point machine precision. A measure
for the distance-corrected flux, which is proportional to
luminosity, is

2
(F() ~ Flthuer) - 2

’
norm

Ldata(t) =

where F'(t) is the raw flux value and F'(¢)meq is the me-
dian value of the raw flux points that were observed
before the trigger. This median value is representative
of the background flux. Even for objects observed by a
single survey, with a common set of passbands on a com-
mon photometric system, comparing the fluxes of dif-
ferent sources in the same rest-frame wavelength range
requires that the light curve photometry be transformed
into a common reference frame, accounting for the red-
shifting of the sources. However, this k-correction (Hogg
et al. 2002) requires knowledge of the underlying spec-
tral energy distribution (SED) of each source, and there-
fore its type — the goal of this work. Therefore, we
have not k-corrected these data into the rest-frame, and
hence, Lgat, cannot be considered the true rest-frame lu-
minosity in each passband. Finally, we normalize each
light curve to a value between 0 and 1 as DNNs perform
more effectively when the inputs are in a comparable
range, and to remove potential Malmquist bias.

2.4.1. Modelling the Early Light Curve

The ability to predict the class of an object as a func-
tion of time is one of the main advantages of RAPID

8 We use the extinction code: https://extinction.readthedocs.
io

hoo
ERy h
0.2 Mt I§

7 50 —25 0 2 50 7
Days since trigger (rest frame)

Figure 3. An example preprocessed Type Ia Supernova
light curve from the ZTF simulated dataset (simulation ID:
6038963; redshift= 0.174). The normalized fluxes of the r
and g passbands are plotted with errors and the solid line is
the best fit model of the pre-maximum part the light curve
(up to tpeax) using equations 3 and 4. The horizontal axis is
plotted in the rest-frame (redshift corrected), while the ver-
tical axis is the relative de-reddened and distance-corrected
flux (or relative luminosity). The vertical black solid line is
the date that difference imaging records a trigger alert, and
the vertical grey dashed line is the model’s prediction of the
explosion date with respect to trigger.

over previous work. Critical to achieving this is deter-
mining the epoch at which transient behaviour begins
(usually the date of explosion) so that we can teach our
DNN what a pre-explosion looks like. Basic geometry
suggests that a single explosive event should evolve in
flux proportional to the square of time (Arnett 1982).
While future work might try to fit a power law, we are
limited by the sparse and noisy data in the early light
curve. Therefore, we model the pre-maximum part of
each light curve in each passband, A, with a simple 2
fit as follows,

Loa(tito,a*, ) = [a*(t —t0)?] - H(t —to) + ¢, (3)
where Lyod(t) is the modelled relative luminosity, ¢g is
the estimate for time of the initial explosion or colli-
sion event, H(t — to) is the Heaviside function, and a
and ¢ are constants for the amplitude and intercept of
the early light curve. The Heaviside function is used to
model the ¢ relationship after the explosion, ¢y, and fit a
constant flux, ¢, before ty. We define the pre-maximum
part of the light curve as observations occurring up to
the simulated peak luminosity of the light curve, t,eak.
We emphasize that this early model is only required for
the training set, and therefore, we are able to use the


https://extinction.readthedocs.io
https://extinction.readthedocs.io

10 MUTHUKRISHNA ET AL.

simulated peak time, which will not be available on ob-
served data and is not used for the testing set.

We make the assumption that the light curves from
each passband have the same explosion date, tg, and fit
the light curves from all passbands simultaneously. This
is a 5 parameter model: two free parameters, slope (a’)
and intercept (c*), for each of the two passbands, and
a shared ty parameter. We aim to optimize the model’s
fit to the light curve by first defining the chi-squared for
each transient as:

tpeak A\12
— L (t;tg,a?, )]
d t mod ’
e -3 3 Wl it O,
A t=—o0
(4)

where ) is the index over passbands, o(t) are the pho-
tometric errors in Lgata, and the sum is taken over all
observations at the position of the transient until the
time of the peak of the light curve, tpcak.

We sampled the posterior probability oc exp (—%XQ)
using MCMC (Markov Chain Monte Carlo) with the
affine-invariant ensemble sampler as implemented in the
Python package, emcee (Foreman-Mackey et al. 2013).
We set a flat uniform prior on ¢y to be in a reasonable
range before trigger, —35 < tp < 0, and have a flat
improper prior on the other parameters. We use 200
walkers and set the initial positions of each walker as a
Gaussian random number with the following mean val-
ues: the median of dem for ¢*, the mean of the Lioia
for a*, and —12 for ty. We ran each walker for 700 steps,
which after analyzing the convergence of a few MCMC
chains, we deemed reasonable to not be too computa-
tionally expensive while still finding approximate best
fits for a,c and ty. The best fit early light curve for an
example Type Ia supernova in the training set is illus-
trated in Fig. 3.

We summarize the selection criteria and preprocessing
stages applied to the testing and training sets as detailed
in sections 2.3 - 2.4 in Table 1.

2.5. Training Set Preparation

Irregularly-sampled time-series data is a common
problem in machine learning, and is particularly preva-
lent in astronomical surveys where the intranight ca-
dence choices and seasonal constraints lead to naturally
arising temporal gaps. Therefore, once the light curves
have been processed and tg has been computed for each
transient, we linearly interpolate between the unevenly
sampled time series data. From this interpolation, we
impute data points such that each light curve is sam-
pled at 3-day intervals between —70 < ¢t < 80 days since
trigger (or as far as the observations exist), to give a
vector of length n = 50, where we set the values outside

Selection criteria Applied to

0<2<0.5
b < 15° or b > 15°
At least 3 points pre-trigger

Train & Test
Train & Test
Train & Test

Preprocessing Applied to

Train & Test
Train & Test
Train & Test
Train & Test
Train & Test
Train only®

Sigma-clipping fluxes
Undilate the light-curves by (1 + z)
Correct light curves for distance.
Correct Milky Way extinction
Rescale light curves between 0 and 1
Model early light curve to obtain to
Keep only —70 < t < 80 days from trigger | Train & Test

2Applied to training set for designating pre-explosion. Applied
to test set to evaluate performance.

Table 1. Summary of the cuts and preprocessing steps ap-
plied to the training and testing sets. The selection criteria
help match the simulations to what we expect from the ob-
served ZTF data-stream.

the data range to zero. We ensure that each light curve
in a given passband is sampled on the same 3-day grid.
The final input image for each transient s is I°, which is
a matrix with each row composed of the imputed light
curve fluxes for each passband and two additional rows
containing repeated values of the host-galaxy redshift in
one row and the MW dust reddening in the other row.
Hence, the input image is an n x (p + 2) matrix, where
p is the number of passbands. This input image, I°®, is
illustrated as the Input Matriz in Fig. 1.

One of the key differences in this work compared to
previous light curve classification approaches is our abil-
ity to provide time-varying classifications. Key to com-
puting this, is labelling the data at each epoch rather
than providing a single label to an entire light curve.
Using the value of ¢y computed in section 2.4.1, we de-
fine two phases of each transient light curve: the pre-
explosion phase (where t < #3), and the transient phase
(where t > tg). Therefore, the label for each light curve
is a vector of length n identifying the transient class
at each time-step. This n-length vector is subsequently
one-hot encoded, such that each class is changed to a
zero-filled vector with one element set to 1 to indicate
the transient class (see equation 7). This transforms the
n-length label vector into an n x (m + 1) vector, where
m is the number of transient classes. This is illustrated
as the Class Matriz in Fig. 1.

3. MODEL
3.1. Framing the Problem

In this work, we train a deep neural network (DNN)
to map the light curve data of an individual transient
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s onto probabilities over classes {¢ = 1,...,(m + 1)}.
The DNN models a function that maps an input multi-
passband light curve matrix, I, for transient s up to a
discrete time ¢, onto an output probability vector,

Y = fu(I°% ), (5)

where 6 are the parameters (e.g. weights and biases of
the neurons) of our DNN architecture. We define the in-
put I°t as an n x (p + 2) matrix” representing the light
curve up to a time-step, t. The output y*! is a probabil-
ity vector with length (m + 1), where each element 5!
is the model’s predicted probability of each class ¢ (at
each time step), such that y5* >0 and 374" g5t = 1.

First, to quantify the discrepancy between the model
probabilities and the class labels we define a weighted
categorical cross-entropy,

m—+1
Hy (Y y™) = = Y we Y log(ysh), (6)

c=1

where w, is the weight of each class, Y*¢ is the label
for the true transient class at each time-step and is a
one-hot encoded vector of length (m + 1) such that,

yst _ 1 if ¢ is the true class of transient s at time ¢

C
0 otherwise

(7)
where the label, Y*!, has two phases, the pre-explosion
phase with class ¢ = 1 when ¢ < ¢y and the transient
phase with class ¢ > 1 when t > .

If weights were equal for all classes, Eq. 6 is propor-
tional to the negative log-likelihood of the probabilities
of a categorical distribution (or a generalized Bernoulli
distribution). However, to counteract imbalances in the
distribution of classes in the dataset which may cause
more abundant classes to dominate in the optimization,
we define the weight for each class ¢ as

_ Nxn
=N

we : (8)
where N, is the number of times a particular class ap-
pears in the N X n training set.

We define the global objective function as

N
0bj(8) = 3N H (Y™, y™), (9)

n
s=1t=0

9 The reader can consider I'’' as an image that zeros out all
future fluxes after a time ¢, hence preserving the n X (p + 2) ma-
trix shape irrespective of the image phase coverage. The function
ft(-;0) only uses the information in the input light curve up to
time ¢.
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where we sum the weighted categorical cross-entropy
over all n time-steps and N transients in the training
set. To train the DNN and determine optimal values
of its parameters é, we minimize this objective function
with the sophisticated and commonly used Adam gradi-
ent descent optimiser (Kingma & Ba 2015). The model
fe(Is é) is represented by the complex DNN architec-
ture illustrated in Fig. 4 and is described in the following
section.

3.2. Recurrent Neural Network Architecture

Recurrent Neural Networks (RNNs), such as Long
Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) networks have been shown to achieve state-
of-the-art performance in many benchmark time-series
and sequential data applications (Bahdanau et al. 2014;
Sutskever et al. 2014; Che et al. 2018). Its success
in these applications is due to its ability to retain an
internal memory of previous data, and hence capture
long-term temporal dependencies of variable-length ob-
servations in sequential data. We extend this archi-
tecture to our case with a time-varying multi-
channel (multiple passbands) input and a time-
varying multi-class output.

Recently, Naul et al. (2018), Charnock & Moss (2017),
Moss (2018), and Hinners et al. (2018) have used two
RNN layers for this framework on astronomical time-
series data. However, our work differs from these
by making use of uni-directional GRUs instead of bi-
directional RNNs. Bi-directional RNNs are able to pass
information both forwards and backwards through the
neural network representation of the light curve, and can
hence preserve information on both the past and future
at any time-step. However, this is only suitable for ret-
rospective classification, because it requires that we wait
for the entire light curve to complete before obtaining
a classification. The real-time classification used in our
work is a novel approach in time-domain astronomy, but
necessitates the use of uni-directional RNNs. Hence, our
two RNN layers read the light curve chronologically.

The deep neural network (DNN) is illustrated in
Fig. 4. We have developed the network with the high
level Python API, Keras (Chollet et al. 2015), built on
the recent highly efficient TensorFlow machine learning
system (Abadi et al. 2016). We describe the architecture
in detail here.

Input: As detailed in section 2.5, the input is an n x
(p + 2) matrix. However, as we are implementing
a sequence classifier, we can consider the input at
each time-step as being vector of length (p + 2).

First GRU Layer: Gated Recurrent Units are an im-
proved version of a standard RNN and are a vari-
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Figure 4. Schematic of the deep recurrent neural network architecture used in RAPID. Each column in the diagram is one of the
n time steps of the processed light curve, while each row represents a different neural network layer. The grey text in each block
states the shape of the output matrix of each layer in that block. The input image is composed of an n X (p+2) matrix consisting
of the light curve fluxes, host redshift, and Milky Way reddening. Two uni-directional gated recurrent unit layers of size 100
are used for encoding and decoding the input sequences, respectively. It is in these RNN layers that information about previous
time-steps is encoded. Batch normalization is applied between each layer to normalize the network parameters and hence, speed
the training process. A 20% dropout is then applied between layers to counter overfitting. Finally, a fully-connected (dense)
layer with a softmax regression activation function is applied to compute the probability of each class at each time-step. We
wrap the final layer in Keras’ Time Distributed layer so that each time step is treated independently, and only uses information
from the current and previous time-steps.

ation of the LSTM (see Chung et al. 2014 for a
detailed comparison and explanation). We have
selected GRUs instead of LSTMs in this work, as
they provide appreciably shorter overall training
time, without any significant difference in classifi-
cation performance. Both are able to capture long-
term dependencies in time-varying data with pa-
rameters that control the information that should
be remembered at each step along the light curve.
We use the first GRU layer to read the input se-
quence one time-step at a time and encode it into a

higher-dimensional representation. We set-up this
GRU layer with 100 units such that the output is
a vector of shape 1 x 100. We apply dropout and
batch normalization after this layer to reduce over-
fitting and to speed up the training performance.

Second GRU Layer: The second GRU layer is condi-

tioned on the input sequence. It takes the out-
put of the previous GRU and generates an output
sequence. Again, we use 100 units in the GRU
to maintain the n x 100 output shape. We use
uni-directional GRUs that enable only information
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from previous time-steps to be encoded and passed
onto future time-steps.

Batch Normalization: We then apply Batch Normal-

ization (first introduced in Toffe & Szegedy 2015)
to each time step of the output convolutions. This
acts to improve and speed up the optimization
while adding stability to the neural network and
reducing overfitting. While training the DNN, the
distribution of each layer’s inputs changes as the
parameters of the previous layers change. To al-
low the parameter changes during training to be
more stable, batch normalization scales the input.
It does this by subtracting the mean of the inputs
and then dividing it by the standard deviation.
Throughout our DNN, we apply batch normaliza-
tion between each layer.

Dropout: We also implement dropout regularization

between each layer of the neural network to re-
duce overfitting during training. This is an im-
portant step that effectively ignores randomly se-
lected neurons during training such that their con-
tribution to the network is temporarily removed.
This process causes other neurons to more robustly
handle the representation required to make predic-
tions for the missing neurons, making the network
less sensitive to the specific weights of any individ-
ual neuron. We set the dropout rate to 20% of the
neurons present in the previous layer each time it
appears in the DNN in Fig. 4.

Dense Layer: As the goal of this work is classification,

we use a dense (or fully-connected) output layer.
A dense layer is the simplest type of neural net-
work layer. It connects all 100 neurons at each
time-step in the previous layer, to the (m + 1)
neurons in the output layer simply using equation
10. As this is a classification task, the output is
a vector consisting of all m transient classes and
the Pre-explosion class. However, as we are inter-
ested in time-varying classifications, we wrap this
Dense layer with a Time-Distributed layer, such
that the dense layer is applied independently at
each time-step, hence giving an output matrix of
shape n x (m + 1).

Neurons: The output of each neuron in a neural net-

work layer can be expressed as the weighted sum
of the connections to it from the previous layer:

M
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where z; are the different inputs to each neuron
from the previous layer, W;; are the weights of the
corresponding inputs, b; is a bias that is added to
shift the threshold of where inputs become signifi-
cant, j is an integer running from 1 to the number
of connected neurons in the previous layer (M),
and ¢ is an integer running from 1 to the number
of neurons in the next layer. For the Dense layer,
x is simply the (1 x 100) matrix from the output
of the GRU and Batch Normalisation, y is made
up of the (m + 1) output classes, j runs from 1 to
(m+ 1) and 4 runs across the 100 input neurons
from the GRU. The matrix of weights and biases
in the Dense layer and throughout the GRU layers
are some of the free parameters that are computed
by TensorFlow during the training process.

Activation function: As with any neural network,

each neuron applies an activation function f(-) to
bring non-linearity to the network and hence help
it to adapt to a variety of data. For feed-forward
networks it is common to make use of Rectified
Linear Units (ReLU, Nair & Hinton 2010) to ac-
tivate neurons. However, the GRU architecture
uses sigmoid activation functions as it outputs a
value between 0 and 1 and can either let no flow
or complete flow of information from previous
time-steps.

Softmax regression: The final layer applies the soft-

max regression activation function, which gener-
alises the sigmoid logistic regression to the case
where it can handle multiple classes. It applies
this to the Dense layer output at each time-step,
so that the output vector is normalized to a value
between 0 and 1 where the sum of the values of all
classes at each time-step sums to 1. This enables
the output to be viewed as a relative probability of
an input transient being a particular class at each
time-step. The output probability vector,

y = softmax(g), (11)

is computed with a softmax activation function
that is defined as

eri

= Eeibj'
J

softmax(x); (12)

We use the output softmax probabilities to rank
the best matching transient classes for each tran-
sient light curve at each time-step.

. We reiterate that the overall architecture is simply a
vi=f Z Wijazj+bi ], (10) function that maps an input nx (p+2) light curve matrix

j=1
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onto an n X (m+1) softmax probability matrix indicating
the probability of each transient class at each time-step.
In order to optimize the parameters of this mapping
function, we specify a weighted categorical cross-entropy
loss-function that indicates how accurately a model with
given parameters matches the true class for each input
light curve (as defined in equation 6).

We minimize the objective function defined in equa-
tion 9 using the commonly used, but sophisticated
stochastic gradient descent optimizer called the Adam op-
timizer (Kingma & Ba 2015). As the class distribution
is inevitably uneven, and the pre-explosion class is nat-
urally over-represented as it appears in each light curve
label, we prevent bias towards over-represented classes
by applying class-dependent weights while training as
defined in equation 8.

The several layers in the DNN create a model that
has over one hundred thousand free parameters. As we
feed in our training set in batches of 64 light curves at
a time, the neural network updates and optimizes these
parameters. While the size of the parameter space seems
insurmountable, the Adam optimizer is able to compute
individual adaptive learning rates for different parame-
ters from estimates of the mean and variance of the gra-
dients and has been shown to be extraordinarily effective
at optimizing high-dimensional deep learning models.

With the often quoted ‘black box’ nature of machine
learning, it is always a worry that the machine learn-
ing algorithms are learning traits that are specific to the
training set but do not reflect the physical nature of the
classes more generally. Ideally, we would like to ensure
that the model we build both accurately captures regu-
larities in the training data while simultaneously gener-
alizing well to unseen data. Simplistic models may fail
to capture important patterns in the data, while models
that are too complex may overfit random noise and cap-
ture spurious patterns that do not generalize outside the
training set. While we implement regularization layers
(dropout) to try to prevent overfitting, we also moni-
tor the performance of the classifier on the training and
testing sets during training. In particular, we ensure
that we do not run the classifier over so many iterations
that the difference between the values of the objective
function evaluated on the training set and the testing
set become significant.

4. RESULTS

In this section we detail the performance of RAPID
trained on simulated ZTF light curves. The dataset
consists of 48029 transients split between 12 different
classes, where each class has approximately 4000 tran-
sients. We trained our DNN on 60% of this set and

tested its performance on the remaining 40%. The data
was preprocessed using the methods outlined in sections
2.3 - 2.5. Processing this set, and then training the
DNN on it, was computationally expensive, taking sev-
eral hours to train. Once the DNN is trained, however, it
is able to classify several thousands of transients within
a few seconds.

4.1. Hyper-parameter Optimization

One of the key criticisms of deep neural networks is
that they have many hyper-parameters describing the
architecture that need to be set before training. As
training our DNN architecture takes several hours, op-
timizing the hyper-parameter space by testing the per-
formance of a range of setup values is a very slow pro-
cess that most similar work have not attempted. De-
spite this challenge, we performed a broad grid-search
of three of our DNN hyper-parameters: number of neu-
rons in each GRU layer, and the dropout fraction. Af-
ter testing 12 different setup parameters, we found that
there was only a 2% variation on the overall accuracy.
The hyper-parameters that are shown in Fig. 4 were the
best performing set of parameters.

4.2. Accuracy

We go beyond previous attempts at photometric clas-
sification in two important ways. Firstly, we aim to
classify a much larger variety of sparse multi-passband
transients, and secondly, and most significantly, we pro-
vide classifications as a function of time. An example of
this is illustrated in Fig. 5. At each epoch along the light
curve, the trained DNN outputs a softmax probability of
each transient class. As more photometric data is pro-
vided along the light curve, the DNN updates the class
probabilities of the transient based on the state of the
network at previous time-steps plus the new time-series
data. Within just a few days of the explosion, and well
before the ZTF trigger, the DNN was able to correctly
learn that the transient evolved from Pre-explosion to a
SNIa.

To assess the performance of RAPID, we make use of
several metrics. The most obvious metric is simply the
accuracy, that is, the ratio of correctly classified tran-
sients in each class to the total number of transients in
each class. At each epoch along every light curve in the
testing set, we select the highest probability class and
compare this to the true class. After aligning each light
curve by its trigger, we obtained the prediction accuracy
of each class as a function of time since trigger. This is
plotted in Fig. 6.

The total classification accuracy of each class in the
testing set increases quickly before trigger, but then be-



RAPID

—_
o
(==}

to= 734.:32 +l t s

Relative Flux
s o o
[\ ot =1
at (e ot

o
o
S

IJJ"_" —— Pre-explosion
—— SNIa-norm

. 0.8 —— SNIbe
Ry —— SNII
= SNIa-91hg
< 0.6 —— SNlax
o —— point-la
[a . Kilonova
Z 0.4 SLSN-I
= PISN
) ]
0.2 ILOT
—— CART
' TDE
0.0 S
—50 —25 0 25 50 75

Days since trigger (rest frame)

Figure 5. An example normal SNIla light curve from the
testing set (simulation ID: 6038963; redshift= 0.174) is
shown in the top panel, and the softmax classification prob-
abilities from RAPID are plotted as a function of time over
the light curve in the bottom panel. The plot shows the rest
frame time since trigger. The vertical grey dashed line is the
predicted explosion date from our t* model fit of the early
light curve (see section 2.4.1). Initially, the object is correctly
predicted to be Pre-explosion, before it is more confidently
predicted as a SNIa-Normal at -20 days before the trigger.
Hence, the neural network predicts the explosion date only
4 days after early light curve model fit’s prediction. The
confidence in the predicted classification improves over the
lifetime of the transient.

gins to flatten out with only small increases after ap-
proximately 20 days post-trigger. For most classes, the
transient behaviour of the light curve is generally near-
ing completion at this stage, and hence we can expect
that new photometric data adds little to improving the
classification as the brightness tends towards the back-
ground flux level. The classification performance of the
core-collapse supernovae, SNIbc and SNII, are particu-
larly poor. To better understand this, it is useful to see
where misclassifications occurred.

4.3. The Confusion Matrix

The confusion matrix is often a good way to visual-
ize this. Typically, each entry in the matrix describes
counts of the number of transients of the true class, ¢,
that had the highest predicted probability in class, ¢é.
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Figure 6. The classification accuracy of each transient class
as a function of time since trigger in the rest frame. The
values correspond to the diagonals of the confusion matrices
at each epoch.

For ease of interpretability, we make use of a specially
normalized confusion matrix in this work. We normal-
ize the confusion matrix such that the (¢, ¢) entry is the
fraction of transients of the true class ¢ that are classi-
fied into the predicted class ¢. With this normalization,
each row in the matrix must sum to 1. Therefore each
row is an estimate of the classifier’s conditional distri-
bution of (maximum probability) predicted labels given
each true class label.

In Fig. 7, we plot the normalized confusion matrices
at an early (2 days post-trigger) and late (40 days post-
trigger) stage of the light curve. In the online material,
we provide an animation of this confusion matrix evolv-
ing in time since trigger (instead of just the two epochs
shown here)!".

The overall classification performance is, as expected,
slightly better at the late phase of the light curve. How-
ever, the performance only 2 days after trigger is partic-
ularly promising for our ability to identify transients at
early times to gather a well-motivated follow-up candi-
date list. SNe Ia have the highest classification accuracy
at early times with most misclassification occurring with
other subtypes of Type la supernovae. At late times, the
Intermediate Luminosity Transients and TDEs are best
identified. The core-collapse supernovae (SNIbc, SNII)
appear to be most often confused with calcium-rich tran-

10 Paper animations can be found here: https://www.ast.cam.
ac.uk/~djm241 /rapid/
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Figure 7. The normalized confusion matrices of the 12 transient classes at 2 days past trigger (top), and at 40 days past
trigger (bottom). The confusion matrices show the classification performance tested on 40% of the dataset after the classifier
was trained on 60% of the dataset. The colour bar and cell values indicate the fraction of each True Label that were classified
as the Predicted Label. Negative colour bar values are used only to indicate misclassifications. Please see the online material
(https://www.ast.cam.ac.uk/~djm241 /rapid /cf.gif) for an animation of the evolution of the confusion matrix as a function of
time since trigger (showing epochs from -25 to 70 days from trigger).
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sients and other supernova types. CARTSs are a newly
discovered class of transients and their physical mecha-
nism is not yet well-understood. However, the reason for
the confusion most likely stems from their fast rise-times
similar to many core-collapse SNe. This is illustrated in
Fig. 8.

4.4. Recewer Operating Characteristic Curves

The confusion matrix is a good measure of the perfor-
mance of a classifier, but it does not make use of the full
suite of probability vectors we obtain for every transient,
and instead only uses the highest scoring class. The Re-
ceiver Operating Characteristic (ROC) Curve, on the
other hand, makes use of the classification probabilities.
Instead of selecting just the highest probability class,
we use a probability threshold pinresh. For each class c,
transient s at time t is considered to be classified as ¢
if Y5 > Dinresh- We sweep the values of pipresh between
0 and 1. The ROC curve plots the true positive rate
(TPR) against the false positive rate (FPR) for these
different probability thresholds. In a multi-class frame-
work, the TPR is a measure of recall or completeness;
it is the ratio between the number of correctly classified
objects in a particular class (TP) to the total number of
objects in that class (TP + FN).

TP

TPR = Tp T N

(13)
Conversely, the FPR is a measure of the false alarm
rate; it is the ratio between the number of transients
that have been misclassified as a particular class (FP)
and the total number of objects in all other classes (FP
+ TN).

~FP

~ FP+TN

A good classifier is one that maximizes the area under
the ROC curve (AUC), with a perfect classifier having
an AUC=1, and a randomly guessing classifier having
an AUC=0.5. Typically, values above 0.9 are considered
to be very good classifiers. In Fig. 9, we plot the ROC
curve at an early and late phase in the light curve. Here,
the classification performance looks very good with sev-
eral classes having AUC values above 0.99 and the over-
all micro-averaged values being 0.95 for the early stage
and 0.98 in the late stage. The macro-averaged ROC is
simply the average of all of the ROC curves computed
independently. Differently, the micro-averaged ROC ag-
gregates the TPR and FPR contributions of all classes,
and is equivalent to the weighted average of all the ROCs
considering the number of transients in each class. As
the class distribution in the dataset is not too unbal-
anced, these values are quite close.

FPR (14)
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Figure 8. Three of the simulated light curves from our sam-
ple - a correctly classified CART (top), a SN Ibc incorrectly
classified as a CART (middle), and a correct classified SN
Ibc (bottom). The dark-coloured square markers are the r
band fluxes and the lighter-coloured circle markers are the g
band fluxes. Our classifier is sensitive to light curve shape,
and the limited colour information available with ZTF leads
to a significant fraction of SN Ibc objects being misclassified
as CARTs. We expect classification performance to improve
with LSST, which will provide ugrizy light curves.

In the online material we plot an animation of the
ROC curve evolving in time since trigger, rather than
the two phases plotted here. As a still-image measure of
this, we plot the AUC of each class as a function of time
since trigger in Fig. 10. Within 5 to 20 days after trig-
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Figure 9. Receiver operating characteristic (ROC) curves for the 12 transient classes at an early epoch at 2 days past trigger
(left), and at a late epoch at 40 days past trigger (right). Each curve represents a different transient class with the area under
the ROC curve (AUC) score in the brackets. The macro-average and micro-average curves which are an average and weighted-
average representation of all classes, respectively (see section 4) are also plotted. We compute the metric on the 40% of the
dataset used for testing. Please see the online material for an animation of the evolution of the ROC curve as a function of time

since trigger. (https://www.ast.cam.ac.uk/~djm241 /rapid/roc.gif)

ger, the AUC flattens out for most classes. We see that
the ILOTs, kilonovae, SLSNe, and PISNs are predicted
with high accuracy well before trigger. These transients
are fainter than most other classes, and hence, do not
trigger an alert until their light curves approach maxi-
mum brightness. This means, that by the time a trigger
happens, the transient behaviour of the light curve is
mature, and the classifier has more information to be
confident in its prediction. On the other hand, the two
core collapse supernovae, SNII and SNIbc, have com-
paratively low AUCs. We expect that additional colour
information will help to separate these from other super-
nova types. The overall performance is best illustrated
by the micro-averaged AUC curve shown as the dotted
blue curve. The AUC is initially low due to the mis-
classifications with Pre-explosion, but within just a few
days after trigger, plateaus to a very respectable AUC
of 0.98.

4.5. Precision-Recall

We compute the Precision-Recall metric. This metric
has been shown to be particularly good for classifiers
trained on imbalanced datasets (Saito & Rehmsmeier
2015). The precision (also known as purity) is a measure
of the number of correct predictions in each class com-

pared to the total number of predictions of that class,
and is defined as,

TP

—_. 1
TP +FP (15)

precision =
The Recall (also known as completeness) is the same as
the true positive rate. It is a measure of the number of
correct predictions in each class compared to the total
number of that class in the testing set, and is defined
as,

TP
l=———. 1
reca TP 1 FN (16)

A good classifier will have both high precision and
high recall, and hence the area under the precision-
recall curve will be high. In making the precision-recall
plot, instead of simply selecting the class with the high-
est probability for each object, we apply a probability
threshold as plotted in Fig. 11. By using a very high
probability threshold (instead of just selecting the most
probable class), we can obtain a much more pure sub-
set of classifications. The PISN, SNIa-norm, SNIa-91bg,
kilonovae, pointla, and ILOTs have very good precision
and recall at the late epoch, and quite respectable at
the early phase. The core collapse SNe and CARTSs
are again shown to perform poorly. Overall, this plot
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Figure 10. The area under the ROC curve (AUC) of each
class as a function of time since trigger. Fig. 9 illustrates the
ROC curves at two epochs with the AUC of each listed in
the legend; this plot shows hows the AUC evolves with time
for each class, and is a still-representation of the animation
of the ROC curves shown in the online material. The overall
performance of the classifier is best judged with the shape of
the ‘micro-average’ curve.

highlights some flaws in the classifier that the previous
metrics did not capture. In particular, the CART class
is shown to perform much more poorly than in previous
metrics, highlighting that it does not have a high preci-
sion and that there are many false positives for it. As
there are fewer CART's in the test set than other classes,
this was not as obvious in the other metrics (see Saito
& Rehmsmeier (2015) for an analysis of precision-recall
vs ROC curves as classification metrics).

4.6. Weighted Log Loss

In each of the previous metrics we have treated each
class equally. However, it is often useful to weight the
classifications of particularly classes more favourably
than others. Malz et al. (2018) recently explored the
sensitivity of a range of different metrics of classification
probabilities under various weighting schemes. They
concluded that a weighted log-loss provided the most
meaningful interpretation, defined as follows

(m+1) N, Yg* st
1 We- ) 5= - Inyd
InLoss? = — <ZC_1 s Ne y ) (17)

S,

where ¢ is an index over the (m + 1) classes and j is
an index over all N members of each class, y5 is the
predicted probability that object s at time ¢ is a member
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of class ¢, and Y'*! is the truth label. The weight of each
class w, can be different, and NV, is the number of objects
in each class.

This metric is currently being used in the PLASTiCC
Kaggle challenge to assess the classification performance
of each entry. We apply a weight of 2 to the classes that
PLASTICC deemed to be rare or interesting and 1 to
the remaining classes:

Weight 1: SNIa, SNIbc, SNII, Ia-91bg, Ia-x, Pre-
explosion

Weight 2: Kilonova, SLSN, PISN, ILOT, CART, TDE

We plot the weighted log-loss as a function of time since
trigger in Fig. 12. The metric of the early (2 days after
trigger) and late (40 days after trigger) epochs are 1.09
and 0.64, respectively, where a perfect classifier receives
a score of 0. While we have applied our classifier to ZTF
simulations, we find that the raw scores are competitive
with top scores in the PLAsTiCC Kaggle challenge. The
sharp improvement in performance at trigger is primar-
ily due to the prior placed on the Pre-explosion phase
of the light curve that forces it to be before trigger.
Within approximately 20 days after trigger, the classi-
fication performance plateaus, as the transient phase of
most light curves is ending.

5. APPLICATION TO OBSERVATIONAL DATA

One of the primary challenges with developing clas-
sifiers for astronomical surveys is obtaining a labelled
sample of well-observed transients across a wide range
of classes. While it may be possible to obtain a labelled
sample of common supernovae during the initial stages
of a survey, the observation rates of less common tran-
sients (such as kilonovae and CARTS, for example) mean
that a diverse and large training set of observed data
is impossible to obtain. Therefore, a classifier that is
trained on simulated data but can classify observational
data streams is of significant importance to the astro-
nomical community. To this end, a key goal of RAPID is
to be able to classify observed data using an architecture
trained on only simulated light curves. In this section,
we provide a few examples of RAPID’s performance on
transients from the ongoing ZTF data stream. In future
work, we hope to extend this analysis to test the clas-
sification performance on a much larger set of observed
light curves.

In Fig. 13 we have tested RAPID on three objects re-
cently observed by ZTF to highlight its direct use on
observational data: ZTF18abxftqm, ZTF19aadnmgf,



20 MUTHUKRISHNA ET AL.

2 days since trigger

1.0';"#_

0.8

<
o

Precision

<
i~

0.2

090 02 04 0.6 08 1.0
Recall

--------- micro-average (0.65) Kilonova (0.76)

— SNla-norm (0.86) —— SLSN-T (0.64)
—— SNIbc (0.35) —— PISN (0.92)
—— SNII (0.19) — 1ILOT (0.77)
—— SNIa-91bg (0.83) CART (0.40)
—— SNIax (0.44) TDE (0.63)

point-Ia (0.71)

(a) Early Epoch

40 days since trigger

1.0

0.84/4

<
o

Precision

<
e~

0.2

0-80 02 04 06 08 1.0
Recall

~~~~~~~~~ micro-average (0.86) Kilonova (0.89)

—— SNIa-norm (0.96) —— SLSN-I (0.83)

—— SNIbe (0.52) —— PISN (0.98)

—— SNII (0.63) —— ILOT (0.90)

—— SNIa-91bg (0.93) CART (0.61)

—— SNlax (0.77) TDE (0.93)
point-Ia (0.89)

(b) Late Epoch

Figure 11. Precision-recall curves for the 12 transient classes at an early epoch at 2 days past trigger (left), and at a
late epoch at 40 days past trigger (right). We compute the metric on the 40% of the dataset used for testing. Please see
the online material for an animation of the evolution of the Precision-Recall as a function of time since trigger. (https:

//www.ast.cam.ac.uk/~djm241 /rapid /pr.gif)

and ZTF18acmzpbf (also known as AT2018hco'!,
SN2019bly'?, SN2018itl'*, respectively). These have
already been spectroscopically classified as a TDE
(z = 0.09), SNIa (z = 0.08), and SNIa (z = 0.036),
respectively (Velzen et al. 2018; Fremling et al. 2019,
2018). In the bottom panel of Fig. 13, we see that
RAPID was able to correctly confirm the class of each
transient well before maximum brightness, and within
just a couple of epochs after trigger.

The two SNIla light curves were correctly identified
after just one detection epoch, and the confidence in
these classifications improved over the lifetime of the
transient. While the SNIa-norm probability was lower
for ZTF18acmzpbf, this is a good example of where the

I https://wis-tns.weizmann.ac.il/object /2018hco
12 https://wis-tns.weizmann.ac.il/object /2019bly
13 https://wis-tns.weizmann.ac.il/object/2018it]

confidence in this transient being any subtype of SNIa
was actually much higher. Given that the second most
probable class was a SNIa-91bg, we can sum the two
class probabilities to obtain a much higher probability
of the transient being a SNIa.

While we have shown RAPID’s effective performance on
some observational data, future revisions of the software
can be used to identify differences between the simulated
training set and observations. This will help to improve
the transient class models that were used to generate the
light curve simulations. Future iterations to improve the
simulations will in turn lead to a classifier that is even
more effective at classifying observational data.

Moreover, as it stands, RAPID can classify 12 different
transient classes. However, if an unforeseen transient
were passed into the classifier, the class probabilities
would split between the classes that were most similar
to the input. RAPID is a supervised learning algorithm,
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Figure 12. The weighted log loss defined in equation 17
and used in PLAsTIiCC (Malz et al. 2018) is plotted as a
function of time since trigger. The weighted log-loss of the
early (2 days after trigger) and late (40 days after trigger)
epochs are 1.09 and 0.64, respectively.

and is not designed for anomaly detection. However,
cases where RAPID is not confident on a classification
may warrant closer attention for the possibility of an
unusual transient.

5.1. Balanced or representative datasets

Machine learning based classifiers such as neural net-
works often fail to cope with imbalanced training sets
as they are sensitive to the proportions of the different
classes (Kotsiantis et al. 2006). As a consequence, these
algorithms tend to favour the class with the largest pro-
portion of observations. This is particularly problematic
when trying to classify rare classes. The intrinsic rate of
some majority classes, such as SNe Ia, is orders of mag-
nitude higher than some rare classes, such as kilonovae.
A neural network classifier trained on such a represen-
tative dataset, and that aims to minimise the overall
unweighted objective function (equation 9), will be in-
centivised to learn how to identify the most common
classes rather than the rare ones. An example of the
poorer performance of classifiers trained on representa-
tive transient datasets compared to balanced datasets
is illustrated well by Figure 7 in Narayan et al. (2018).
The shown t-SNE (t-distributed Stochastic Neighbour
Embedding, van der Maaten & Hinton 2008) plot is able
to correctly cluster classes much more accurately when
the dataset is balanced.
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Moreover, building a representative dataset is a very
difficult task and there is a non-representativeness be-
tween spectroscopic and photometric samples. The de-
tection rates of different transient classes in photometric
surveys are often biased by brightness and the ease at
which some classes can be classified over others. Spec-
troscopic follow-up strategies have been dominated by
SNe Ia for cosmology, and have hence led to biased spec-
troscopic sets. Recently, however, Ishida et al. (2019)
identified a framework for constructing a more repre-
sentative training set. They make use of real-time ac-
tive learning to improve the way labelled samples are
obtained from spectroscopic surveys to ultimately op-
timise the scientific performance of photometric classi-
fiers. Employing such a framework will allow for the
construction of a training set that is more representa-
tive.

In our work, we simulate a balanced training set in
an attempt to mitigate the effects of the bias present
in existing datasets and to improve our classifier’s accu-
racy on rare classes. While machine learning classifiers
tend to perform better on balanced datasets (Kotsiantis
et al. 2006; Narayan et al. 2018), future work should
verify this for photometric identification by comparing
the performance of classifiers trained on balanced and
representative training sets. However, until the issue
of the non-representativeness between spectroscopic and
photometric samples is mitigated with approaches like
Ishida et al. (2019), a representative dataset remains
difficult to build.

6. FEATURE-BASED EARLY CLASSIFICATION

To compare the performance of RAPID against tradi-
tional light curve classification approaches which often
use extracted light curve features for classification, we
developed a Random Forest-based classifier that com-
puted statistical features of each light curve to use as
input, rather than directly using the photometric infor-
mation. This has been the most commonly used ap-
proach in light curve classification tasks to date (e.g.
Lochner et al. 2016; Narayan et al. 2018; Mdéller et al.
2016; Newling et al. 2011; Karpenka et al. 2013; Revs-
bech et al. 2018). We extend upon the approach de-
veloped in Narayan et al. (2018) and based on Lochner
et al. (2016) by using a wider variety of important fea-
tures and by extending the problem for early light curve
classification. Specifically, we only compute features us-
ing data up to 2 days after trigger so that the Random
Forest classifier can be directly compared with the DNN
early classifications.

Extracting features from light curves provides us with
a uniform method of comparing between transients
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Figure 13. Classification of three light curves from the observed ZTF data stream. In each of the three example cases, RAPID
correctly classifies the transient well before peak brightness, and often within just a few epochs. The ZTF names are listed in the
titles of each transient plot and from left to right they are also known by the following names: AT2018hco, SN2019bly, SN2018itl.
These objects were spectroscopically classified as a TDE (z = 0.09), SNIa (z = 0.08), and SNIa (z = 0.036), respectively (Velzen

et al. 2018; Fremling et al. 2019, 2018).

which are often unevenly sampled in time. We can
train directly on a synthesised feature vector instead
of the photometric light curves. For time-series data,
extracting moments is the most obvious way to start
obtaining features. We compute several moments of
the light curve, and a list of the distilled features used
in classification are listed in Table 2. While we focus
on early classification in this paper, we also list some
full-light curve features that we used in work not shown
in this paper that some readers may find useful. As
we have two different passbands, we compute the fea-
tures for each passband and obtain twice the number of
moment-based features listed in the table. We also make
use of more context specific features, such as redshift
and colour information.

We compute the early rise rate feature for each pass-
band as the slope of the fitted early light curve model
defined in section 2.4.1,

Lfﬁod (tpeak) — L?\nod(to)
(tpeak - tO)

rate® = (18)

We use the rise rate, and the early light curve model
parameter fits @ and ¢ from equation 3 as features in the

early classifier. We then define the colour as a function
of time,

Lfnod (t)

LT

mod (t) <19>

colour(t) = —2.5logy, (

where L2 . (t) is the modelled relative luminosity (de-

fined in equation 3) at a particular passband, .

We use the colour curves computed from each tran-
sient to define several features. Using equation 19, we
compute the colour of each object at a couple of well-
spaced points on the early light curve (5 days and 9 days
after ¢g) and use them as features in our early classifier.
We also compute the slope of the colour curve and use
that as an additional feature for the early classifier. For
the full light curve classifier, we compute the colour am-
plitude as the difference in the light curve amplitudes
in two different passbands, and also compute the colour
mean as the ratio of the mean flux value of two different
passbands.

We feed the feature set into a Random Forest classi-
fier. Random Forests (Breiman 2001) are one of the
most flexible and popular machine learning architec-
tures. They construct an ensemble of several fully grown
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Early light curve features only

Early rise rate

Slope of early light curve (see equation 18).

a

Amplitude of quadratic fit to the early light curve (see equation 3).

C

Intercept of quadratic fit to the early light curve (see equation 3).

Colour at n days

Logarithmic ratio of the flux in two passbands (see equation 19).

Early colour slope

Slope of the colour curve.

Early and full light curve features

Redshift

Photometric cosmological redshift.

Milky Way Dust Extinction

Interstellar extinction.

Variance

Statistical variance of the flux distribution.

Amplitude

Ratio of the 99th minus 1st and 50th minus 1st percentile of the flux
distribution.

Standard Deviation / Mean

A measure of the average inverse signal-to-noise ratio.

Median Absolute Deviation

A robust estimator of the standard deviation of the distribution.

Autocorrelation Integral

The integral of the correlation vs time difference (Mislis et al. 2016).

Von-Neumann Ratio

A meausure of the autocorrelation of the flux distribution.

The Shannon entropy assuming a Gaussian CDF following Mislis et al.

Entropy (2016).
Rise time Time from trigger to peak flux.
Full light curve features only
Kurtosis Characteristic “peakedness” of the magnitude distribution.

Shapiro-Wilk Statistic

A measure of the flux distribution’s normality.

Skewness

Characteristic asymmetry of the flux distribution.

Interquartile Range

The difference between the 75th and 25th percentile of the flux distribution.

Stetson K An uncertainty weighted estimate of the kurtosis following Stetson (1996).
Stetson J An uncertainty weighted estimate of the Welch-Stetson Variability Index
(Welch & Stetson 1993).
Product of the Stetson J and Stetson K moments (Kinemuchi et al. 2006;
Stetson L ) i
Stetson 1996).
HL Ratio The ratio of the amplitudes of points higher and lower than the mean.

Fraction of observations above

trigger

Fraction of light curve observations above the trigger.

Period

Top ranked periods from the Lomb-scargle periodogram fit of the light
curves (Lomb 1976; Scargle 1982).

Period Score

Period weights from the Lomb-scargle periodogram fit of the light curves
(Lomb 1976; Scargle 1982).

Colour Amplitude

Ratio of the amplitudes in two passbands.

Colour Mean

Ratio of the mean fluxes in two passbands.
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Table 2. Description of the features extracted from each passband of each light curve in the dataset. Some of these are redefined

from Table 2 of Narayan et al. (2018).

and uncorrelated decision trees (Morgan & Sonquist
1963) to create a more robust classifier that limits over-
fitting. Each decision tree is made up of a series of
hierarchical branches that check whether values in the
feature vector are in a particular range until it ascer-
tains each of the class labels in the form of leaves. The
trees are trained recursively and independently, selecting
which feature and boundary provide the highest infor-

mation gain for classifications. A single tree is subject
to high variance and can easily overfit the training set.
By combining an ensemble of decision trees - providing
each tree with a subset of data that is randomly replaced
during training - a Random Forest is able to decrease the
variance by averaging the results from each tree.

We have designed the Random Forest with 200 esti-
mators (or trees) and have run it through twice. On
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Figure 14. Confusion matrix of the early light curve Ran-
dom Forest classifier trained on 60% and tested on 40% of
the dataset described in section 2. The classifier makes use of
200 estimators (trees) in the ensemble. The colour bar and
values indicate the percentage of each true label that were
classified as the predicted label. Negative colour bar values
are used only to indicate misclassifications.
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Figure 15. Receiver operating characteristic of the feature-
based Random Forest approach. The features are computed
on photometric data up to 2 days past trigger, and are fed
into a Random Forest classifier. Each curve represents a
different transient class with the area under the curve (AUC)
score in brackets. The macro and micro average curves which
are an average and weighted-average representation of all
classes are also plotted. The metric computed on 40% of the
dataset.

the first run we feed the classifier the entire feature-set.
We then rank the features by importance in classifica-
tion and select the top 30 features. We feed only these
top 30 features into the second run of the classifier. As
many of the features are obviously highly correlated with
each other, this acts to reduce feature dilution, whereby
we remove features that do not provide high selective
power.

We compute features using light curves up to only the
first 2 days after trigger. As the Random Forest is much
quicker to classify than the DNN, we perform 10-fold
cross-validation to obtain a more robust estimate of the
classifier’s performance. We then produce the confusion
matrix in Fig. 14 and the ROC curve in Fig. 15. We can
compare these metrics to the early epoch metrics at 2
days after trigger produced with the deep neural network
in Figures 7 and 9. We find that the performance in the
early part of the light curve is marginally worse than
the DNN with a micro-averaged AUC of 0.92 compared
to 0.95. Moreover, the ability of the DNN to provide
time-varying classifications makes it much more suited
to early classification than the Random Forest.

In Fig. 16, we rank the importance of the top 30 fea-
tures in the Random Forest classifier. While redshift
is clearly the most important feature in the dataset,
we have also built classifiers without using redshift as
a feature and found that the performance was only
marginally worse. This provides an insight into the clas-
sifier’s robustness when applied to surveys where red-
shift is not available. The next best features is the his-
toric colour, suggesting that the type of host-galaxy is
important contextual information to discern transients.
The early slope of the light curve also ranks highly, as it
is able to distinguish between faster rising core-collapse
supernovae and other slower rising transients such as
magnetars (SLSNe).

7. CONCLUSIONS

Existing and future wide-field optical surveys will
probe new regimes in the time-domain, and find new
astrophysical classes, while enabling a deeper under-
standing of presently rare classes. In addition, cor-
relating these sources with alerts from gravitational
wave, high-energy particle, and neutrino observatories
will enable new breakthroughs in multi-messenger as-
trophysics. However, the alert-rate from these surveys
far outstrips the follow-up capacity of the entire astro-
nomical community combined. Realising the promise
of these wide-field surveys requires that we characterize
sources from sparse early-time data, in order to select
the most interesting objects for more detailed analysis.



RAPID

25

= < < = =
o = — — =
[o3] o Do = D

Importance
o
3

.
3
3
3
3
-
-
-
-
[ 3
-
-
| 3
|_
_I_

redshift
fitc g
fita r
fitc r
fita g
1ann r
skew g
q3lr
mean g-r
q3l g

historic-color g-r
iserate g

amplitude r

earlyriserate r
von-neumann g

somean r

Ims r
rms g
mad g

mad r
acorT I

variance r
amplitude g
variance g
somean g
color 9days g-r
color Sdays g-r
acorr g
stetsonj g

amp g-r
filt-amplitude g
filt-amplitude r

color slope9 g-r
color slopeb g-r
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We have detailed the development of a new real-time
photometric classifier, RAPID, that is well-suited for the
millions of alerts per night that ongoing and upcoming
wide-field surveys such as ZTF and LSST will produce.
The key advantages that distinguish our approach from
others in the literature are:

1. Our deep recurrent neural network with uni-
directional gated recurrent units, allows us to
classify transients using the available data as a
function of time.

2. Our architecture combined with a diverse train-
ing set allows us to identify 12 different transient
classes within days of its explosion, despite low
S/N data and limited colour information.

3. We do not require user-defined feature extraction
before classification, and instead use the processed
light curves as direct inputs.

4. Our algorithm is designed from the outset with
speed as a consideration, and it can classify the
tens of thousands of events that will be discovered
in each LSST image within a few seconds.

This critical component of RAPID that enables early
classification is our ability to use measurements of the
source before an alert is triggered — “precovery” pho-
tometry with insufficient significance to trigger an alert,

but that nevertheless encodes information about the
transient. While we designed RAPID primarily for early
classification, the flexibility of our architecture means
that it is also useful for photometric classification with
any available phase coverage of the light curves. It
is competitive with contemporary approaches such as
Lochner et al. (2016); Charnock & Moss (2017); Narayan
et al. (2018) when classifying the full light curve.

There is no satisfactory single metric that can com-
pletely summarise classifier performance, and we have
presented detailed confusion matrices, ROC curves and
measures of precision vs recall for all the classes repre-
sented in our training set. The micro-averaged AUC, the
most common single metric used to measure classifier
performance, evaluated across the 12 transient classes
is 0.95 and 0.98 at 2 days and 40 days after an alert
trigger, respectively. We further evaluated RAPID’s per-
formance on a few transients from the real-time ZTF
data stream, and, as an example, have shown its abil-
ity to effectively identify a TDE and two SNe Ia well
before maximum brightness. The results at early-times
are particularly significant as, in many cases, they can
exceed the performance of trained astronomers attempt-
ing visual classification.

We also developed a second early classification ap-
proach that trained a Random Forest classifier on fea-
tures extracted from the light curve. This allowed us
to directly compare the feature-based Random Forest
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approach to RAPID’s model-independent approach. We
found that the classification performances are compara-
ble, but the RNN has the advantage of obtaining time-
varying classifications, making it ideal for transient alert
brokers. To this end, we have recently begun integrat-
ing the RAPID software with the ANTARES alert-broker,
and plan to apply our DNN to the real-time ZTF data
stream in the near future.

In future work, we plan on applying this method on
LSST simulations to help to inform how changes in ob-
serving strategy affect transient classifications at early
and late phases. Overall, RAPID provides a novel and
effective method of classifying transients and providing
prioritised follow-up candidates for the new era of large
scale transient surveys.
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